Deep Probabilistic Generative Models for Audio/Visual tasks

Xiaoyu LIN INRIA, Univ. Grenoble-Alpes

November 21, 2023

Probabilistic Generative Models

Understand complex real-world data

Image

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Text

Audio

Time series

- Understand complex real-world data
- Generate new data points

"An astronaut riding a horse"

"An 80s driving pop song with heavy drums and synth pads in the background"

Examples from DALLE 2 and MusicGen

generative model

generative model

• Implicit generative models

- Generative Adversarial Networks (GANs)

- Implicit generative models
 - Generative Adversarial Networks (GANs)
- Explicit generative models: explicitly model the probability density function (PDF)

True data distribution

Parametric probabilistic model $p_{\theta}(\mathbf{x})$

Approaches

- Implicit generative models
 - Generative Adversarial Networks (GANs)
- Explicit generative models

Auto-regressive models:
$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{d} p_{\theta}(x_i | \mathbf{x}_{< i})$$

Energy-based models: $p_{\theta}(\mathbf{x}) = \frac{\exp(-E_{\theta}(\mathbf{x}))}{Z_{\theta}}$

- Score-based models: $s_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$
- Normalizing flows: $\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z}), \mathbf{x} = f_{\theta}(\mathbf{z}), p_{\theta}(\mathbf{x}) = p_{\mathbf{z}}(\mathbf{z})$

Diffusion models: $\mathbf{x}_0 \sim p_{data}(\mathbf{x}), \mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), p_{\theta}(\mathbf{x})$

Latent variable models: $p_{\theta}(\mathbf{x}) = \int p(\mathbf{z}) p_{\theta}(\mathbf{x} | \mathbf{z}) d\mathbf{z}$

Propose a specific form of $p_{\theta}(\mathbf{x})$

$$\mathbf{x}_{0}(f_{\theta}^{-1}(\mathbf{x})) | \det(\mathbf{J}_{f_{\theta}^{-1}}(\mathbf{x})) |$$
$$\mathbf{x}_{0} = \int p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}) d\mathbf{x}_{1:T}$$

Construct $p_{\theta}(\mathbf{x})$ from a known simple distribution

Latent Variable Models and Variational Inference

Two main objectives of latent variable models

Help to construct more complex distributions

$$p_{\theta}(x) = \int p_{\theta}(x \mid z) p_{\theta}(z)$$

Example: probabilistic sequential data models

Dynamical Variational Auto-encoders (DVAEs)

Two main objectives of latent variable models

- Help to construct more complex distributions $p_{\theta}(x) = \int p_{\theta}(x \,|\, z) p_{\theta}(z) dz$
- Infer the unknown variables

Two main objectives of latent variable models

- Help to construct more complex distributions $p_{\theta}(x) = \int p_{\theta}(x \,|\, z) p_{\theta}(z) dz$
- Infer the unknown variables : Bayesian Inference ullet

likelihood
$$p_{\theta}(z \mid x) = \frac{p_{\theta}(z \mid x)}{\int p_{\theta}(z \mid x)}$$

 $p_{\theta}(x \mid z)$

Solution: introduce a variational distribution to approximate the posterior

 $q(z) \approx p_{\theta}(z \mid x)$

- Solution: introduce a variational distribution to approximate the posterior \bullet $q(z) \approx p_{\theta}(z \mid x)$
- Optimisation: minimize the Kullback-Leibler (KL) divergence

- Solution: introduce a variational distribution to approximate the posterior $q(z) \approx p_{\theta}(z \mid x)$
- Optimisation: minimize the Kullback-Leibler (KL) divergence

$$KL[q(z) | | p_{\theta}(z | x)] = -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(z | x)}{q(z)}]$$
$$= -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{p_{\theta}(x)q(z)}] = -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{q(z)} - \underbrace{\log p_{\theta}(x)}_{q(z)}]$$
Independent with $q(z)$

- Solution: introduce a variational distribution to approximate the posterior q(z)
- Optimisation: minimize the Kullback-Leibler (KL) divergence

$$KL[q(z) | | p_{\theta}(z | x)] = -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(z | x)}{q(z)}]$$

$$= -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{p_{\theta}(x)q(z)}] = -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{q(z)} - \log p_{\theta}(x)]$$
evidence
$$= \log p_{\theta}(x) - \mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{q(z)}]$$

$$KL[q(z) | | p_{\theta}(z | x)] = -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(z | x)}{q(z)}]$$
$$= -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{p_{\theta}(x)q(z)}] = -\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{q(z)} - \log p_{\theta}(x)]$$
Model evidence
$$p_{\theta}(x, z)$$

$$\approx p_{\theta}(z \mid x)$$

$$\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x,z)}{q(z)}]$$

$KL[q(z) \mid | p_{\theta}(z \mid x)] = \mathbf{0}$

Model evidence

Minimize $KL[q(z) | | p_{\theta}(z | x)]$ w.r.t q(z)

$$\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x, z)}{q(z)}] = \log p_{\theta}(x) - KL[q(z) | | p_{\theta}(z | x)] \leq \log p_{\theta}(x)$$

$$\geq 0$$

$$p_{\theta}(x) \geq 0$$

$$p_{\theta}(x)$$

$$p_{\theta}(x) \neq KL[q(z) | | p_{\theta}(z | x)]$$
ELBO

Ev

Ma

$$og p_{\theta}(x)) - \mathbb{E}_{q(z)}[log \frac{p_{\theta}(x, z)}{q(z)}]$$

)
$$\bigoplus$$
 Maximize $\mathbb{E}_{q(z)}[\log \frac{p_{\theta}(x,z)}{q(z)}]$ w.r.t $q(z)$

• ELBO:

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$ • ELBO:

• If q(z) can be expressed in closed form \longrightarrow EM algorithm

 $p_{\theta^{old}}(x)$

$\mathscr{L}(q,\theta^{old})$

$$KL[q(z) | | p_{\theta^{old}}(z | x)]$$

E step: set $q(z) = p_{\theta^{old}}(z \mid x)$ and compute $\mathcal{Q}(\theta, \theta^{old}) = \mathbb{E}_{p_{\theta^{old}}(z \mid x)}[\log p_{\theta}(x, z)]$

- ELBO:
- If q(z) can be expressed in closed form \longrightarrow EM algorithm

E step: set $q(z) = p_{\theta^{old}}(z \mid x)$ and compute $\mathcal{Q}(\theta, \theta^{old}) = \mathbb{E}_{p_{\theta^{old}}(z \mid x)}[\log p_{\theta}(x, z)]$

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$

- ELBO:
- If q(z) can be expressed in closed form \longrightarrow EM algorithm

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$

M step: estimate $\theta^{new} = \arg \max_{\theta} \mathcal{Q}(\theta, \theta^{old})$

- ELBO:
- If q(z) can be expressed in closed form \longrightarrow EM algorithm

M step: estimate θ'

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$

 $p_{\theta^{new}}(x) \qquad KL[q(z) | | p_{\theta^{new}}(z | x)]$ $\mathscr{L}(q, \theta^{new})$

$$\stackrel{new}{=} \arg \max_{\theta} \mathcal{Q}(\theta, \theta^{old})$$

- ELBO: ullet
- If q(z) can be expressed in closed form \longrightarrow_{M} EM algorithm
- Mean-field approximation: $q(z) = \prod q_i(z_i | x)$

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$

i=1

- ELBO:
- If q(z) can be expressed in closed form \longrightarrow EM algorithm

i=1

M Step: estimate $\theta^{new} = \arg \max \mathscr{L}(q, \theta)$

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$ • Mean-field approximation: $q(z) = \prod q_i(z_i | x) \longrightarrow$ Variational EM algorithm Variational E Step: $\forall i \in \{1, ..., M\}$, compute $q_i(z_i | x) \propto \exp(\mathbb{E}_{\prod_{i \neq i}}[q_i(z_i | x)])$

θ

- ELBO:
- If q(z) can be expressed in closed form \longrightarrow EM algorithm

$\mathscr{L}(q,\theta) = \mathbb{E}_{q(z)}[\log p_{\theta}(x,z) - \log q(z)]$ • Mean-field approximation: $q(z) = \prod q_i(z_i | x) \longrightarrow$ Variational EM algorithm • Amortized inference: $\mathscr{L}(\phi, \theta) = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(x | z)] - KL(q_{\phi}(z) | | p(z)) \longrightarrow VAE$

i=1

Unsupervised multi-object tracking (MOT) with MixDVAE

Given a sequence of video, track the objects of interest and assign a unique ID to each of the object.

4 main sub-tasks in MOT

• Extracting source observations (detections) at each time frame

4 main sub-tasks in MOT

- Extracting source observations (detections) at each time frame
- Modeling the dynamics of the sources' movements

4 main sub-tasks in MOT

- Extracting source observations (detections) at each time frame
- Modeling the dynamics of the sources' movements
- Associating observations to sources consistently over time

4 main sub-tasks in MOT

- Extracting source observations (detections) at each time frame
- Modeling the dynamics of the sources' movements
- Associating observations to sources consistently over time
- Accounting for birth and death process of source trajectories

Tracking-by-Detection paradigm

Detection

Similarity / Cost Calculation Data association, Re-Identification, Trajectories birth/death

Detections by a public detector SDP (Yang et al., 2016)

Appearance related issues

- Camera motion
- Bad illumination
- Objects occlusion
- Similar appearances
- Noisy detections

ID Switches False Negatives

Modelling sources' motion dynamics

Motion models

- •Constant velocity assumptions / Kalman Filter (Bewley et al., 2016; Woke et al., 2017; Bergmann et al., 2019; Ban et al., 2021)
- •RNN / Neural Network based models (Milan et al., 2017; Sadeghian et al., 2017; Babaee et al., 2018)
- Probabilistic motion models (Fang et al., 2018; Saleh et al., 2021)

Challenges

low video sampling rate, moving camera, high object velocity, complex nonlinear motion patterns in long-term tracks

NEEDS FOR MORE ROBUST MOTION MODELS

Use DVAEs for source motion dynamics modeling

Non-linear probabilistic sequential latent variable generative models

Training by maximizing the Evidence Lower BOund (ELBO)

$$\mathscr{L}(\theta,\phi;\mathbf{s}_{1:T}) = \mathbb{E}_{q_{\phi_{\mathbf{z}}}(\mathbf{z}_{1:T}|\mathbf{s}_{1:T})}[\log p_{\theta_{\mathbf{s}\mathbf{z}}}(\mathbf{s}_{1:T},\mathbf{z}_{1:T}) - \log q_{\phi_{\mathbf{z}}}(\mathbf{z}_{1:T}|\mathbf{s}_{1:T})]$$

Focus on two sub-tasks

4 main sub-tasks in MOT

- Extracting source observations (detections) at each time frame
- Modeling the dynamics of the sources' movements
- Associating observations to sources consistently over time
- Accounting for birth and death process of source trajectories

Tracking-by-detection, kown number of sources

Definition of random variables

•**0** = {**0**_{1:*T*,1: K_t}} $\in \mathbb{R}^{T \times K_t \times 4}$: positions of detection bounding boxes

- •**0** = {**0**_{1:*T*,1: K_t}} $\in \mathbb{R}^{T \times K_t \times 4}$: positions of detection bounding boxes
- • $\mathbf{s} = {\mathbf{s}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times 4}$: true positions of sources

- •**0** = {**0**_{1:*T*,1:*K_t*} $\in \mathbb{R}^{T \times K_t \times 4}$: positions of detection bounding boxes}
- • $\mathbf{s} = {\{\mathbf{s}_{1:T,1:N}\}} \in \mathbb{R}^{T \times N \times 4}$: true positions of sources
- • $\mathbf{z} = {\mathbf{z}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times L}$: latent sequences of DVAE models

- $\mathbf{0} = {\mathbf{0}_{1:T,1:K_t}} \in \mathbb{R}^{T \times K_t \times 4}$: positions of detection bounding boxes
- • $\mathbf{s} = {\mathbf{s}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times 4}$: true positions of sources
- • $\mathbf{z} = {\mathbf{z}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times L}$: latent sequences of DVAE models
- •**w** = { $w_{1:T,1:K_t}$ } \in {1,...,N}^{$T \times K_t$} : discrete assignment variables, $w_{tk} = n$
 - means the observation \mathbf{o}_{tk} is assigned to source n

Definition of random variables

- •**0** = {**0**_{1:T,1:K_t}} $\in \mathbb{R}^{T \times K_t \times 4}$: positions of detection bounding boxes • $\mathbf{s} = {\mathbf{s}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times 4}$: true positions of sources
- • $\mathbf{z} = {\mathbf{z}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times L}$: latent sequences of DVAE models
- • $\mathbf{W} = \{w_{1:T,1:K_t}\} \in \{1,...,N\}^{T \times K_t}$: discrete assignment variables, $w_{tk} = n$ means the observation $\mathbf{0}_{tk}$ is assigned to source n

Observed variable: 0 Latent variables: S, Z, W MOT objective: estimate the posterior distribution $p(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Associated graphical model

Generative model: $p_{\theta}(\mathbf{0}, \mathbf{w}, \mathbf{s}, \mathbf{z}) = p_{\theta_0}(\mathbf{0} | \mathbf{w}, \mathbf{s}) p_{\theta_w}(\mathbf{w}) p_{\theta_{sz}}(\mathbf{s}, \mathbf{z})$

Extended graphical model over time frames

Associated graphical model

Generative model: $p_{\theta}(\mathbf{0}, \mathbf{w}, \mathbf{s}, \mathbf{z}) = p_{\theta_0}(\mathbf{0} | \mathbf{w}, \mathbf{s}) p_{\theta_w}(\mathbf{w}) p_{\theta_{sz}}(\mathbf{s}, \mathbf{z})$

Intractable true posterior distribution $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Extended graphical model over time frames

Associated graphical model

Folded graphical model

Generative model: $p_{\theta}(\mathbf{0}, \mathbf{w}, \mathbf{s}, \mathbf{z}) = p_{\theta_0}(\mathbf{0} | \mathbf{w}, \mathbf{s}) p_{\theta_w}(\mathbf{w}) p_{\theta_{sz}}(\mathbf{s}, \mathbf{z})$

Intractable true posterior distribution $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Inference model: mean-field like approximation $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0}) \approx q_{\phi_w}(\mathbf{w} \mid \mathbf{0}) q_{\phi_z}(\mathbf{z} \mid \mathbf{s}) q_{\phi_s}(\mathbf{s} \mid \mathbf{0})$

Extended graphical model over time frames

Associated graphical model

Folded graphical model

Generative model: $p_{\theta}(\mathbf{0}, \mathbf{w}, \mathbf{s}, \mathbf{z}) = p_{\theta_0}(\mathbf{0} | \mathbf{w}, \mathbf{s}) p_{\theta_w}(\mathbf{w}) p_{\theta_{sz}}(\mathbf{s}, \mathbf{z})$

Intractable true posterior distribution $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Inference model: mean-field like approximation $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0}) \approx q_{\phi_w}(\mathbf{w} \mid \mathbf{0}) q_{\phi_z}(\mathbf{z} \mid \mathbf{s}) q_{\phi_s}(\mathbf{s} \mid \mathbf{0})$ Optimization by maximizing the ELBO $\mathscr{L}(\theta, \phi; \mathbf{0}) \equiv \mathbb{E}_{q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})}[\log p_{\theta}(\mathbf{0}, \mathbf{s}, \mathbf{z}, \mathbf{w}) - \log q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})]$

Extended graphical model over time frames

Experimental settings

Datasets

- •DVAE pre-training
- A synthetic single-source motion trajectories dataset
- •Evaluation

MOT17-3T dataset created from the MOT17 training set:

- Subsequences of length T (T = 60, 120, 300 frames are tested)
- No birth / death process
- 3 tracking sources per test data sample

Baselines

ArTIST (Saleh et al., 2021), VKF (Ban et al., 2020), Deep AR

Comparison with the SoTA models

Dataset	Method	MOTA↑	$MOTP\uparrow$	IDF1↑	$\# \mathrm{IDS} \downarrow$	%IDS↓	$MT\uparrow$	$\mathrm{ML}\!\!\downarrow$	$\#\mathrm{FP}{\downarrow}$	$\% \mathrm{FP} \downarrow$	$\# FN \downarrow$	%FN↓
	ArTIST	63.7	84.1	48.7	86371	28.0	4684	0	9962	3.2	15525	5.0
Short	$\mathbf{V}\mathbf{K}\mathbf{F}$	56.0	82.7	77.3	5660	1.8	3742	761	64945	21.1	64945	21.1
	Deep AR	67.4	76.1	83.1	5248	1.7	3670	129	49595	16.0	49595	16.0
	MixDVAE	79.1	81.3	88.4	4966	1.6	4370	50	29808	9.7	29808	9.7
	ArTIST	61.0	84.2	43.9	102978	24.6	2943	0	25388	6.1	34812	8.3
Medium	$\mathbf{V}\mathbf{K}\mathbf{F}$	57.5	83.3	77.6	7657	1.8	2563	487	85053	20.3	85053	20.3
	Deep AR	65.3	76.0	81.8	5387	1.3	2435	149	71775	17.0	71775	17.0
	MixDVAE	78.6	82.2	88.0	6107	1.5	2907	120	41747	9.9	41747	9.9
	ArTIST	53.5	84.5	40.7	205263	20.1	2513	4	135401	13.2	135401	13.2
Long	$\mathbf{V}\mathbf{K}\mathbf{F}$	74.4	86.2	84.4	30069	2.9	2756	100	116160	11.4	116160	11.4
	Deep AR	75.5	76.6	87.1	26506	2.6	2555	18	123262	12.1	123262	12.1
	MixDVAE	83.2	82.4	90.0	23081	2.3	2890	12	74550	7.3	74550	7.3

Table 2: MOT results for short (T = 60), medium (T = 120), and long (T = 300) sequences.

Tracking example visualization

Weakly supervised single-channel audio source separation with MixDVAE

Audio source separation

"Cocktail Party Effect" – Bregman 1990

Applications

- real-time speaker separation
- speech enhancement within hearing aids
- voice cancellation for karaoke

. . .

SC-ASS: Time-Frequency Masking with probabilistic models

Key question: how to obtain the masks?

Definition of random variables

• $\mathbf{0} = \{o_{1:T,1:F}\} \in \mathbb{C}^{T \times F}$: STFT spectrogram of the observed mixture signal

Definition of random variables

• $\mathbf{0} = \{o_{1:T,1:F}\} \in \mathbb{C}^{T \times F}$: STFT spectrogram of the observed mixture signal • $\mathbf{s} = \{s_{1:N,1:T,1:F}\} \in \mathbb{C}^{N \times T \times F}$: STFT spectrograms of N sources

Definition of random variables

- $\mathbf{0} = \{o_{1:T,1:F}\} \in \mathbb{C}^{T \times F}$: STFT spectrogram of the observed mixture signal
- •**s** = { $s_{1:N,1:T,1:F}$ } $\in \mathbb{C}^{N \times T \times F}$: STFT spectrograms of N sources
- $\mathbf{z} = \{\mathbf{z}_{1:N,1:T}\} \in \mathbb{R}^{N \times T \times L}$: latent sequences of DVAE models

ram of the observed mixture signal ectrograms of N sources ences of DVAE models

Definition of random variables

- $\mathbf{0} = \{o_{1:T,1:F}\} \in \mathbb{C}^{T \times F}$: STFT spectrogram of the observed mixture signal
- • $\mathbf{s} = \{s_{1:N,1:T,1:F}\} \in \mathbb{C}^{N \times T \times F}$: STFT spectrograms of N sources
- $\mathbf{z} = {\mathbf{z}_{1:N,1:T}} \in \mathbb{R}^{N \times T \times L}$: latent sequences of DVAE models
- • $\mathbf{w} = \{w_{1:T,1:F}\} \in \{1,...,N\}^{T \times F}$: discrete assignment variables, $w_{tf} = n$ means the mixture signal at TF bin [t, f] $o_{t,f}$ is assigned to source n

Ζ

S

0

W

- $\mathbf{0} = \{o_{1:T,1:F}\} \in \mathbb{C}^{T \times F}$: STFT spectrogram of the observed mixture signal
- •**s** = { $s_{1:N,1:T,1:F}$ } $\in \mathbb{C}^{N \times T \times F}$: STFT spectrograms of N sources
- $\mathbf{z} = {\mathbf{z}_{1:N,1:T}} \in \mathbb{R}^{N \times T \times L}$: latent sequences of DVAE models
- • $\mathbf{w} = \{w_{1:T,1:F}\} \in \{1,...,N\}^{T \times F}$: discrete assignment variables, $w_{tf} = n$ means the mixture signal at TF bin [t, f] $o_{t,f}$ is assigned to source n
- Observed variable: 0 Latent variables: s, z, w SC-ASS objective: estimate the posterior distribution $p(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Associated graphical model

Generative model: $p_{\theta}(\mathbf{0}, \mathbf{w}, \mathbf{s}, \mathbf{z}) = p_{\theta_0}(\mathbf{0} | \mathbf{w}, \mathbf{s}) p_{\theta_w}(\mathbf{w}) p_{\theta_{sz}}(\mathbf{s}, \mathbf{z})$

Intractable true posterior distribution $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Inference model: mean-field like approximation $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0}) \approx q_{\phi_w}(\mathbf{w} \mid \mathbf{0}) q_{\phi_z}(\mathbf{z} \mid \mathbf{s}) q_{\phi_s}(\mathbf{s} \mid \mathbf{0})$ Optimization by maximizing the ELBO $\mathscr{L}(\theta, \phi; \mathbf{0}) \equiv \mathbb{E}_{q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})}[\log p_{\theta}(\mathbf{0}, \mathbf{s}, \mathbf{z}, \mathbf{w}) - \log q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})]$

These distributions are different from that of the MOT problem.

Pre-train a DVAE model on each single audio source signal

Experimental settings

Datasets

- •DVAE pre-training
 - -Wall Street Journal (WSJ0) dataset (Garofolo et al., 1993)
 - -Chinese Bamboo Flute (CBF) dataset (Wang et al., 2022)
- •Evaluation

ratios and three different sequence lengths (T=50, 100, 300).

Baselines

NMF (Virtanen, 2007)

- Mixture signal created from the WSJ0 and CBF test sets with different speech-to-music
- VKF, Deep AR, MixIT (Wisdom et al., 2020), Vanilla NMF (Févotte et al., 2018), temporal

Comparison with baseline models

Dataset	Mathad		Speech		Chinese bamboo flute			
Dataset	method	$\mathrm{RMSE}\downarrow$	SI-SDR \uparrow	$\mathrm{PESQ}\uparrow$	$\mathrm{RMSE}\downarrow$	SI-SDR \uparrow	$\mathrm{PESQ}\uparrow$	
	Mixture	0.016	-4.94	1.22	0.016	4.93	1.09	
	VKF-Oracle	0.004	14.83	2.00	0.004	20.15	2.33	
	DVAE-init	0.013	-0.51	1.20	0.019	3.04	1.44	
Short	VKF-DVAE-init	0.012	2.24	1.21	0.012	8.06	1.33	
	${ m Deep} \ { m AR}$	0.009	5.32	1.29	0.018	5.19	1.48	
	MixIT	0.011	3.26	-	0.009	7.15	-	
	Vanilla NMF	0.011	3.01	1.40	0.012	9.09	1.37	
	Temporal NMF	0.009	4.99	1.53	0.011	10.26	1.53	
	MixDVAE	0.006	9.23	1.73	0.007	13.50	2.30	
	Mixture	0.016	-4.44	1.17	0.016	4.44	1.08	
	VKF-Oracle	0.004	14.88	1.88	0.003	20.24	2.41	
	DVAE-init	0.014	0.10	1.15	0.020	2.42	1.27	
Medium	VKF-DVAE-init	0.013	1.25	1.12	0.013	7.42	1.26	
	${ m Deep} \ { m AR}$	0.010	4.88	1.21	0.017	5.17	1.35	
	MixIT	0.009	4.75	-	0.009	8.74	-	
	Vanilla NMF	0.011	3.28	1.41	0.011	8.88	1.35	
	Temporal NMF	0.010	5.12	1.48	0.011	9.96	1.44	
	MixDVAE	0.007	9.32	1.65	0.007	13.05	2.16	
	Mixture	0.016	-4.52	1.19	0.016	4.53	1.10	
	VKF-Oracle	0.004	14.65	1.89	0.003	20.45	2.60	
	DVAE-init	0.013	0.20	1.15	0.020	2.29	1.22	
Long	VKF-DVAE-init	0.013	0.34	1.10	0.013	7.35	1.24	
	${ m Deep} \ { m AR}$	0.010	3.87	1.17	0.017	4.74	1.27	
	MixIT	0.006	10.2	-	0.007	11.76	-	
	Vanilla NMF	0.011	3.31	1.40	0.011	8.98	1.35	
	Temporal NMF	0.010	5.01	1.47	0.011	10.06	1.42	
	MixDVAE	0.007	9.062	1.64	0.007	12.92	2.06	

Table 3: SC-ASS results for short (T = 50), medium (T = 100), and long (T = 300) sequences.

SC-ASS example visualization

(d) DVAE-init

(e) VKF-DVAE-init

(f) MixDVAE

-10

-20

-30

