
Mixture of Dynamical Variational Autoencoders for 
Multi-Source Trajectory Modeling and Separation

1

Xiaoyu Lin, Laurent Girin, Xavier Alameda-Pineda

INRIA, Univ. Grenoble-Alpes

February 27th, 2024

[1] Lin, X., Girin, L., & Alameda-Pineda, X., 2023. Mixture of Dynamical Variational Autoencoders for 
Multi-Source Trajectory Modeling and Separation. Transactions on Machine Learning Research.



Probabilistic Generative Models
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• Understand complex real-world data


3

Motivations

Image Audio

Text Time series



• Understand complex real-world data


• Generate new data points
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Motivations

“An astronaut riding a horse”

generative model

* Examples from DALLE 2 and MusicGen

“An 80s driving pop song 
with heavy drums and synth 

pads in the background”
generative model



• Understand complex real-world data


• Generate new data points


• Discover unknown quantities / data representations
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Motivations

x

z?
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Approaches

• Implicit generative models

- Generative Adversarial Networks (GANs)


• Explicit generative models: explicitly model the probability density function (PDF)

True data distribution 
pdata(x)

Parametric probabilistic model
pθ(x)

i.i.d data points
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Example: probabilistic modeling of sequential data

zt−1 zt zt+1

xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

pθ(x1:T) = ∫ pθ(z1)
T

∏
t=2

pθ(zt |zt−1)
T

∏
t=1

pθ(xt |zt)dz1:T

Hidden Markov Model 
(HMM)

Linear Dynamical System 
(LDS)

 discretez  continuous and

Linear dynamics
z

pθ(x1:T) = ∫ p(x1, z1)
T

∏
t=2

pθ(xt |x1:t−1, z1:t)pθ(zt |x1:t−1, z1:t−1)dz1:T

Dynamical Variational 
Auto-encoders 


(DVAEs) [1]

State Space Models

(SSM)

Non-linear dynamics

[1] Laurent Girin et al., 2021, "Dynamical Variational Autoencoders: A Comprehensive Review", Foundations and Trends in Machine Learning.
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Application scenarios: multi-source trajectory separation

Multi-Object Tracking Audio Source Separation



Unsupervised multi-object tracking 
(MOT) with MixDVAE
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MOT task definition

4 main sub-tasks in MOT 
• Extracting source observations 
(detections) at each time frame 

• Modeling the dynamics of the 
sources’ movements 

• Associating observations to sources 
consistently over time 

• Accounting for birth and death 
process of source trajectories
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Motion-based MOT

4 main sub-tasks in MOT 
• Extracting source observations 
(detections) at each time frame 

• Modeling the dynamics of the 
sources’ movements 

• Associating observations to sources 
consistently over time 

• Accounting for birth and death 
process of source trajectories
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Tracking-by-detection, kown number of sources



Use DVAEs for source motion dynamics modeling

Non-linear probabilistic sequential latent variable generative models

Training by maximizing the Evidence Lower BOund (ELBO)

DVAE model

Single trajectory s1:T Encoder Decoder Reconstructed trajectory ̂s1:T

T frames T frames
ϕz θsz

qϕz
(z1:T |s1:T) pθsz

(s1:T, z1:T)

ℒ(θ, ϕ; s1:T) = 𝔼qϕz(z1:T|s1:T)[log pθsz
(s1:T, z1:T) − log qϕz

(z1:T |s1:T)]
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Define MOT from a probabilistic perspective
z

s

o
w

Definition of random variables 

• : positions of detection bounding boxes 

•  : true positions of sources 

• : latent sequences of DVAE models 

•  : discrete assignment variables,  
means the observation  is assigned to source  

Observed variable:         Latent variables: , ,  
MOT objective: estimate the posterior distribution  

o = {o1:T,1:Kt
} ∈ ℝT×Kt×4

s = {s1:T,1:N} ∈ ℝT×N×4

z = {z1:T,1:N} ∈ ℝT×N×L

w = {w1:T,1:Kt
} ∈ {1,...,N}T×Kt wtk = n

otk n

o s z w
p(s, z, w |o)
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Associated graphical model 

Generative model:  

Intractable true posterior distribution  

Inference model: mean-field like approximation  

Optimization by maximizing the ELBO 

pθ(o, w, s, z) = pθo
(o |w, s)pθw

(w)pθsz
(s, z)

pθszw
(s, z, w |o)

pθszw
(s, z, w |o) ≈ qϕw

(w |o)qϕz
(z |s)qϕs

(s |o)

ℒ(θ, ϕ; o) = 𝔼qϕ(s,z,w|o)[log pθ(o, s, z, w) − log qϕ(s, z, w |o)]

Resolve MOT through Variational Inference (VI) 

zt+1,:zt−1,: zt,:

st−1,: st,: st+1,:

ot,:ot−1,:

wt−1,: wt,: wt+1,:

ot+1,:

Extended graphical model over time frames

z

s

o
w

Folded graphical model
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‣Pre-train the DVAE 
model using a synthetic 
single-object trajectory 
dataset. 
‣Approximate the 
posterior distributions 
through the Variational 
Expectation-
Maximization (VEM) 
algorithm.

Resolve MOT through Variational Inference (VI) 
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MixDVAE



Experimental settings

Datasets 
•DVAE pre-training 

A synthetic single-source motion trajectories dataset 

•Evaluation 

MOT17-3T dataset created from the MOT17 training set:  

- Subsequences of length  (  frames are tested) 
- No birth / death process 
- 3 tracking sources per test data sample 

Baselines 
ArTIST (Saleh et al., 2021), VKF (Ban et al., 2020), Deep AR

T T = 60,120,300
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Comparison with the SoTA models
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Tracking example visualization

t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 t = 70 t = 80 t = 90

Ground 
Truth

Detection

ArTIST

VKF

Deep AR

MixDVAE
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Weakly supervised single-channel 
audio source separation with MixDVAE
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Audio source separation

Applications 

- real-time speaker separation


- speech enhancement within hearing aids


- voice cancellation for karaoke


- …
“Cocktail Party Effect” — Bregman 1990
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Separation 
Model

Mixed signal TF - Spectrogram

Mixture

STFT

Masks Separated Spectrograms

iSTFT

Separated Signals

SC-ASS: Time-Frequency Masking with probabilistic models

Key question: how to obtain the masks?

21



Define SC-ASS from a probabilistic perspective
z

s

o
w

Definition of random variables 

• : STFT spectrogram of the observed mixture signal 

•  : STFT spectrograms of N sources 

• : latent sequences of DVAE models 

•  : discrete assignment variables,  
means the mixture signal at TF bin [t, f]  is assigned to source  

Observed variable:         Latent variables: , ,  
SC-ASS objective: estimate the posterior distribution  

o = {o1:T,1:F} ∈ ℂT×F

s = {s1:N,1:T,1:F} ∈ ℂN×T×F

z = {z1:N,1:T} ∈ ℝN×T×L

w = {w1:T,1:F} ∈ {1,...,N}T×F wtf = n
ot,f n

o s z w
p(s, z, w |o)
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Associated graphical model 

Generative model:  

Intractable true posterior distribution  

Inference model: mean-field like approximation  

Optimization by maximizing the ELBO 

pθ(o, w, s, z) = pθo
(o |w, s)pθw

(w)pθsz
(s, z)

pθszw
(s, z, w |o)

pθszw
(s, z, w |o) ≈ qϕw

(w |o)qϕz
(z |s)qϕs

(s |o)

ℒ(θ, ϕ; o) = 𝔼qϕ(s,z,w|o)[log pθ(o, s, z, w) − log qϕ(s, z, w |o)]

Resolve SC-ASS through Variational Inference (VI) 

zt+1,:zt−1,: zt,:

st−1,: st,: st+1,:

ot,:ot−1,:

wt−1,: wt,: wt+1,:

ot+1,:

Extended graphical model over time frames

z

s

o
w

Folded graphical model

These distributions are different 
from that of the MOT problem.
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Resolve SC-ASS through Variational Inference (VI) 

Pre-train a DVAE model on each single audio source signal

STFT
ϕz θsz

z1:T

ISTFT

Original speech signal Reconstructed speech 
signal

vθs,1:T

Sampling

s1:T

STFT
ϕz θsz

z1:T

ISTFT

Original music signal Reconstructed music signalvθs,1:T

Sampling

s1:T
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Resolve SC-ASS through Variational Inference (VI) 

Mixture 
spectrogram 

o ∈ ℂT×F

Initialization:  
mixture spectrogram 

o ∈ ℂT×F
DVAE predicted 

spectrograms  

Assignment  
variable wtf

Estimated source 
spectrograms 

 s1:N ∈ ℂN×T×FE-Z Step
Update ϕz

MixDVAE 
algorithm

Update 
 , θz θs

E-S Step

E-W StepUpdate  
Φ(i)

tk

M Step

DVAE model Offline 
pre-training

ϕz θsz

vθs,1:N(s(i−1)
1:t−1, z1:t)ϕ(i)

z θ(i)
sz
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Experimental settings

Datasets 
•DVAE pre-training 

-Wall Street Journal (WSJ0) dataset (Garofolo et al., 1993) 

-Chinese Bamboo Flute (CBF) dataset (Wang et al., 2022) 

•Evaluation 

Mixture signal created from the WSJ0 and CBF test sets with different speech-to-music 
ratios and three different sequence lengths (T=50, 100, 300). 

Baselines 
VKF, Deep AR, MixIT (Wisdom et al., 2020), Vanilla NMF (Févotte et al., 2018), temporal 
NMF (Virtanen, 2007)
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Comparison with baseline models
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SC-ASS example visualization
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Conclusions

Advantages 
•Data efficiency: no need for large amount of annotated data 

•Interpretability 

•Prediction uncertainty calibration 

Limitations 
•Computational efficiency
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Further discussions

Context 
•Boom of large models trained over large datasets: generative models, foundation models. 

•Practical concerns about model transparency, interpretability, uncertainty calibration, data efficiency, and 

human-model interaction. 

Open question 
•How can statistical and probabilistic knowledge be effectively integrated into DL architectures to 

enhance the design of more robust models? 

Evaluation factors 
•Performance 

•Computation efficiency 

•Generalization ability 

•… 30

•Training configurations: un/semi/self-supervision

•Optimization methods

•Model design

•….

New Learning framework



Q & A
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