Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation

Xiaoyu Lin, Laurent Girin, Xavier Alameda-Pineda INRIA, Univ. Grenoble-Alpes

February 27th, 2024

[1] Lin, X., Girin, L., & Alameda-Pineda, X., 2023. Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation. *Transactions on Machine Learning Research*.

Probabilistic Generative Models

Understand complex real-world data

Image

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Text

Audio

Time series

- Understand complex real-world data
- Generate new data points

"An astronaut riding a horse"

"An 80s driving pop song with heavy drums and synth pads in the background"

* Examples from DALLE 2 and MusicGen

generative model

generative model

- Understand complex real-world data
- Generate new data points
- Discover unknown quantities / data representations

- Implicit generative models
 - Generative Adversarial Networks (GANs)
- Explicit generative models: explicitly model the probability density function (PDF)

True data distribution

Parametric probabilistic model $p_{\theta}(\mathbf{x})$

Example: probabilistic modeling of sequential data

[1] Laurent Girin et al., 2021, "Dynamical Variational Autoencoders: A Comprehensive Review", Foundations and Trends in Machine Learning.

Auto-encoders (**DVAEs**) [1]

Application scenarios: multi-source trajectory separation

Multi-Object Tracking

Audio Source Separation

Unsupervised multi-object tracking (MOT) with MixDVAE

MOT task definition

4 main sub-tasks in MOT

- Extracting source observations (detections) at each time frame
- Modeling the dynamics of the sources' movements
- Associating observations to sources consistently over time
- Accounting for birth and death process of source trajectories

Motion-based MOT

4 main sub-tasks in MOT

- Extracting source observations (detections) at each time frame
- Modeling the dynamics of the sources' movements
- Associating observations to sources consistently over time
- Accounting for birth and death process of source trajectories

Tracking-by-detection, kown number of sources

Use DVAEs for source motion dynamics modeling

Non-linear probabilistic sequential latent variable generative models

Training by maximizing the Evidence Lower BOund (ELBO)

$$\mathscr{L}(\theta,\phi;\mathbf{s}_{1:T}) = \mathbb{E}_{q_{\phi_{\mathbf{z}}}(\mathbf{z}_{1:T}|\mathbf{s}_{1:T})}[\log p_{\theta_{\mathbf{s}\mathbf{z}}}(\mathbf{s}_{1:T},\mathbf{z}_{1:T}) - \log q_{\phi_{\mathbf{z}}}(\mathbf{z}_{1:T}|\mathbf{s}_{1:T})]$$

Define MOT from a probabilistic perspective

Definition of random variables

- •**0** = {**0**_{1:T,1:K_t}} $\in \mathbb{R}^{T \times K_t \times 4}$: positions of detection bounding boxes • $\mathbf{s} = {\mathbf{s}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times 4}$: true positions of sources
- • $\mathbf{z} = {\mathbf{z}_{1:T,1:N}} \in \mathbb{R}^{T \times N \times L}$: latent sequences of DVAE models
- • $\mathbf{W} = \{w_{1:T,1:K_t}\} \in \{1,...,N\}^{T \times K_t}$: discrete assignment variables, $w_{tk} = n$ means the observation $\mathbf{0}_{tk}$ is assigned to source n

Observed variable: 0 Latent variables: S, Z, W MOT objective: estimate the posterior distribution $p(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Resolve MOT through Variational Inference (VI)

Associated graphical model

Folded graphical model

Generative model: $p_{\theta}(\mathbf{0}, \mathbf{w}, \mathbf{s}, \mathbf{z}) = p_{\theta_0}(\mathbf{0} | \mathbf{w}, \mathbf{s}) p_{\theta_w}(\mathbf{w}) p_{\theta_{sz}}(\mathbf{s}, \mathbf{z})$

Intractable true posterior distribution $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Inference model: mean-field like approximation $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0}) \approx q_{\phi_w}(\mathbf{w} \mid \mathbf{0}) q_{\phi_z}(\mathbf{z} \mid \mathbf{s}) q_{\phi_s}(\mathbf{s} \mid \mathbf{0})$ Optimization by maximizing the ELBO $\mathscr{L}(\theta, \phi; \mathbf{0}) = \mathbb{E}_{q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})}[\log p_{\theta}(\mathbf{0}, \mathbf{s}, \mathbf{z}, \mathbf{w}) - \log q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})]$

Extended graphical model over time frames

Resolve MOT through Variational Inference (VI)

Experimental settings

Datasets

- •DVAE pre-training
- A synthetic single-source motion trajectories dataset
- •Evaluation

MOT17-3T dataset created from the MOT17 training set:

- Subsequences of length T (T = 60, 120, 300 frames are tested)
- No birth / death process
- 3 tracking sources per test data sample

Baselines

ArTIST (Saleh et al., 2021), VKF (Ban et al., 2020), Deep AR

Comparison with the SoTA models

Dataset	Method	MOTA↑	$MOTP\uparrow$	IDF1↑	$\# \mathrm{IDS} \downarrow$	%IDS↓	$MT\uparrow$	$\mathrm{ML}\!\!\downarrow$	$\#\mathrm{FP}{\downarrow}$	$\% \mathrm{FP} \downarrow$	$\# FN \downarrow$	%FN↓
	ArTIST	63.7	84.1	48.7	86371	28.0	4684	0	9962	3.2	15525	5.0
Short	$\mathbf{V}\mathbf{K}\mathbf{F}$	56.0	82.7	77.3	5660	1.8	3742	761	64945	21.1	64945	21.1
	Deep AR	67.4	76.1	83.1	5248	1.7	3670	129	49595	16.0	49595	16.0
	MixDVAE	79.1	81.3	88.4	4966	1.6	4370	50	29808	9.7	29808	9.7
Medium	ArTIST	61.0	84.2	43.9	102978	24.6	2943	0	25388	6.1	34812	8.3
	$\mathbf{V}\mathbf{K}\mathbf{F}$	57.5	83.3	77.6	7657	1.8	2563	487	85053	20.3	85053	20.3
	Deep AR	65.3	76.0	81.8	5387	1.3	2435	149	71775	17.0	71775	17.0
	MixDVAE	78.6	82.2	88.0	6107	1.5	2907	120	41747	9.9	41747	9.9
	ArTIST	53.5	84.5	40.7	205263	20.1	2513	4	135401	13.2	135401	13.2
Long	$\mathbf{V}\mathbf{K}\mathbf{F}$	74.4	86.2	84.4	30069	2.9	2756	100	116160	11.4	116160	11.4
	Deep AR	75.5	76.6	87.1	26506	2.6	2555	18	123262	12.1	123262	12.1
	MixDVAE	83.2	82.4	90.0	23081	2.3	2890	12	74550	7.3	74550	7.3

Table 2: MOT results for short (T = 60), medium (T = 120), and long (T = 300) sequences.

Tracking example visualization

Weakly supervised single-channel audio source separation with MixDVAE

Audio source separation

"Cocktail Party Effect" – Bregman 1990

Applications

- real-time speaker separation
- speech enhancement within hearing aids
- voice cancellation for karaoke

. . .

SC-ASS: Time-Frequency Masking with probabilistic models

Key question: how to obtain the masks?

Define SC-ASS from a probabilistic perspective

Definition of random variables

- •**0** = { $o_{1:T,1:F}$ } $\in \mathbb{C}^{T \times F}$: STFT spectrogram of the observed mixture signal W
- •**s** = { $s_{1:N,1:T,1:F}$ } $\in \mathbb{C}^{N \times T \times F}$: STFT spectrograms of N sources
- • $\mathbf{z} = {\mathbf{z}_{1:N,1:T}} \in \mathbb{R}^{N \times T \times L}$: latent sequences of DVAE models
- • $\mathbf{w} = \{w_{1:T,1:F}\} \in \{1,...,N\}^{T \times F}$: discrete assignment variables, $w_{tf} = n$ means the mixture signal at TF bin [t, f] $o_{t,f}$ is assigned to source n

Observed variable: 0 Latent variables: S, Z, W SC-ASS objective: estimate the posterior distribution $p(s, z, w \mid 0)$

Ζ

S

0

Resolve SC-ASS through Variational Inference (VI)

Associated graphical model

Generative model: $p_{\theta}(\mathbf{0}, \mathbf{w}, \mathbf{s}, \mathbf{z}) = p_{\theta_0}(\mathbf{0} | \mathbf{w}, \mathbf{s}) p_{\theta_w}(\mathbf{w}) p_{\theta_{sz}}(\mathbf{s}, \mathbf{z})$

Intractable true posterior distribution $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0})$

Inference model: mean-field like approximation $p_{\theta_{szw}}(\mathbf{s}, \mathbf{z}, \mathbf{w} \mid \mathbf{0}) \approx q_{\phi_w}(\mathbf{w} \mid \mathbf{0}) q_{\phi_z}(\mathbf{z} \mid \mathbf{s}) q_{\phi_s}(\mathbf{s} \mid \mathbf{0})$ Optimization by maximizing the ELBO $\mathscr{L}(\theta, \phi; \mathbf{0}) = \mathbb{E}_{q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})}[\log p_{\theta}(\mathbf{0}, \mathbf{s}, \mathbf{z}, \mathbf{w}) - \log q_{\phi}(\mathbf{s}, \mathbf{z}, \mathbf{w} | \mathbf{0})]$

These distributions are different from that of the MOT problem.

Resolve SC-ASS through Variational Inference (VI)

Pre-train a DVAE model on each single audio source signal

Resolve SC-ASS through Variational Inference (VI)

Experimental settings

Datasets

- •DVAE pre-training
 - -Wall Street Journal (WSJ0) dataset (Garofolo et al., 1993)
 - -Chinese Bamboo Flute (CBF) dataset (Wang et al., 2022)
- •Evaluation

ratios and three different sequence lengths (T=50, 100, 300).

Baselines

NMF (Virtanen, 2007)

- Mixture signal created from the WSJ0 and CBF test sets with different speech-to-music
- VKF, Deep AR, MixIT (Wisdom et al., 2020), Vanilla NMF (Févotte et al., 2018), temporal

Comparison with baseline models

Dataset	Mathad		Speech		Chinese bamboo flute			
Dataset	method	$\mathrm{RMSE}\downarrow$	SI-SDR \uparrow	$\mathrm{PESQ}\uparrow$	$\mathrm{RMSE}\downarrow$	SI-SDR \uparrow	$\mathrm{PESQ}\uparrow$	
	Mixture	0.016	-4.94	1.22	0.016	4.93	1.09	
	VKF-Oracle	0.004	14.83	2.00	0.004	20.15	2.33	
	DVAE-init	0.013	-0.51	1.20	0.019	3.04	1.44	
Short	VKF-DVAE-init	0.012	2.24	1.21	0.012	8.06	1.33	
	${ m Deep} \ { m AR}$	0.009	5.32	1.29	0.018	5.19	1.48	
	MixIT	0.011	3.26	-	0.009	7.15	-	
	Vanilla NMF	0.011	3.01	1.40	0.012	9.09	1.37	
	Temporal NMF	0.009	4.99	1.53	0.011	10.26	1.53	
	MixDVAE	0.006	9.23	1.73	0.007	13.50	2.30	
	Mixture	0.016	-4.44	1.17	0.016	4.44	1.08	
	VKF-Oracle	0.004	14.88	1.88	0.003	20.24	2.41	
	DVAE-init	0.014	0.10	1.15	0.020	2.42	1.27	
Medium	VKF-DVAE-init	0.013	1.25	1.12	0.013	7.42	1.26	
	${ m Deep} \ { m AR}$	0.010	4.88	1.21	0.017	5.17	1.35	
	MixIT	0.009	4.75	-	0.009	8.74	-	
	Vanilla NMF	0.011	3.28	1.41	0.011	8.88	1.35	
	Temporal NMF	0.010	5.12	1.48	0.011	9.96	1.44	
	MixDVAE	0.007	9.32	1.65	0.007	13.05	2.16	
	Mixture	0.016	-4.52	1.19	0.016	4.53	1.10	
	VKF-Oracle	0.004	14.65	1.89	0.003	20.45	2.60	
	DVAE-init	0.013	0.20	1.15	0.020	2.29	1.22	
Long	VKF-DVAE-init	0.013	0.34	1.10	0.013	7.35	1.24	
Ũ	${ m Deep} \ { m AR}$	0.010	3.87	1.17	0.017	4.74	1.27	
	MixIT	0.006	10.2	-	0.007	11.76	-	
	Vanilla NMF	0.011	3.31	1.40	0.011	8.98	1.35	
	Temporal NMF	0.010	5.01	1.47	0.011	10.06	1.42	
	MixDVAE	0.007	9.06	1.64	0.007	12.92	2.06	

Table 3: SC-ASS results for short (T = 50), medium (T = 100), and long (T = 300) sequences.

SC-ASS example visualization

(d) DVAE-init

(f) MixDVAE

Advantages

- •Data efficiency: no need for large amount of annotated data
- Interpretability
- Prediction uncertainty calibration

Limitations

Computational efficiency

Further discussions

Context

- •Boom of large models trained over large datasets: generative models, foundation models.
- human-model interaction.

Open question

enhance the design of more robust models?

Evaluation factors

- Performance
- Computation efficiency
- Generalization ability

• Practical concerns about model transparency, interpretability, uncertainty calibration, data efficiency, and

•How can statistical and probabilistic knowledge be effectively integrated into DL architectures to

New Learning framework

Training configurations: un/semi/self-supervision

Optimization methods

Model design

