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What makes the great success of today’s AI systems?

Methodological 
Background Main Work Conclusion  

& Discussions
Future Research  

DirectionIntroduction

i.i.d. data  
samples 

(xtrain
1 , . . . , xtrain

N ) ∼ p(x)

…

Generator 
p(x)

Supervisor 
p(y |x)

ytrain
1 = 2

ytrain
2 = 3

ytrain
3 = 1

ytrain
4 = 0…

ŷ = fθ(x)

Key factors of success[2] 

• Large dataset 

• Well-designed learning machine 

• Computational ability 

• The i.i.d. data assumption

New data sample xtest ∼ p(x)

True labels

Estimations

ℒ((x, y); θ)

=
1
N

N

∑
i=1

l(( ̂yi, yi); θ)

Training

Inference

Empirical risk 
minimization

Statistical learning framework[1]

[1] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. 2000. 
[2] Bernhard Schölkopf, and Julius von Kügelgen. From statistical to causal learning. Proc. of the Int.Congress of Mathematicians. 2022.

(xtrain, ytrain) ∼ p(x, y)

Learning 
Machine 

fθ( ⋅ ) ∈ Θ
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(xtest, ytest) ∼ p(x, y)



In what situations does this system not work?

Methodological 
Background Main Work Conclusion  

& Discussions
Future Research  

DirectionIntroduction

1. When we do not have enough data for training
ImageNet[3] 

Object recognition 
~1,200,000 images

GPT3[4] 
Text generation 

~570 GB pf text data

Whisper[5] 
Speech recognition 

~680,000 hours of audio?
5

[3] Jia Deng, et al. ImageNet: A large-scale hierarchical image database. Proc. IEEE Int. Conf. Computer Vision Pattern Recogn. (CVPR). 2009. 
[4] Tom B. Brown, et al. Language models are few-shot learners. Advances in Neural Inform. Process. Systems (NeurIPS). 2020. 
[5] Alec Radford, et al. Robust Speech Recognition via Large-Scale Weak Supervision. arXiv preprint arXiv:2212.04356. 2022.
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In what situations does this system not work?

Methodological 
Background Main Work Conclusion  

& Discussions
Future Research  

DirectionIntroduction

1. When we do not have enough data for training 

2. When during inference, the new data  does not follow distribution (xtest, ytest) p(x, y)

i.i.d. training data samples 
(xtrain

1 , . . . , xtrain
N ) ∼ p(x)

…

Training

Inference
test data samples xtest ∼ p′ (x)

ŷtrain = fθ(xtrain)

ŷtest = fθ(xtest) ?
6

Learning 
Machine 

fθ( ⋅ ) ∈ Θ

Out-of-distribution 
Generalization[6,7,8]

[6] Shai Ben-David, et al. A theory of learning from different domains. Mach. Learn. 2010. 
[7] Krikamol Muandet, et al. Domain Generalization via Invariant Feature Representation. Advances in Neural Inform. Process. Systems (NeurIPS). 2013. 
[8] Jiashuo Liu, et al. Towards Out-Of-Distribution Generalization: A Survey. arXiv preprint arXiv:2108.13624. 2021.



In what situations does this system not work?

Methodological 
Background Main Work Conclusion  

& Discussions
Future Research  

DirectionIntroduction

1. When we do not have enough data for training 

2. When during inference, the new data  does not follow distribution  

3. When we would like to understand the “black-box” learning machine 

(xtest, ytest) p(x, y)

fθ( ⋅ )

= ?
7

Learning 
Machine 

fθ( ⋅ ) ∈ Θ

Interpretable AI[9,10]

[9] Been Kim, et al. Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). Proc. Int. Conf. Mach. Learn. (ICML). 2018. 
[10] Finale Doshi-Velez, et al. Towards A Rigorous Science of Interpretable Machine Learning. arXiv preprint arXiv:1702.08608. 2017.



Background of the proposed solution

Methodological 
Background Main Work Conclusion  

& Discussions
Future Research  

DirectionIntroduction

Statistical learning framework (ERM inductive principle)

Bayesian inference

pθ(y |x) =
pθ(x |y)pθ(y)

∫ pθ(x |y)pθ(y)dy

likelihood prior

marginal likelihood / evidence

posterior

8

Supervisor 
p(y |x)≈ ŷ = fθ(x) ≈ 𝔼[y |x]⇒Learning 

Machine 
fθ( ⋅ ) ∈ Θ

Empirical risk minimization



pθ(y |x) =
pθ(x |y)pθ(y)

∫ pθ(x |y)pθ(y)dy

Background of the proposed solution

Methodological 
Background Main Work Conclusion  

& Discussions
Future Research  

DirectionIntroduction

Bayesian inference

• Model  with domain specific knowledge. 

• Model  with a deep probabilistic generative model. 

• Infer  with Bayesian inference methodology.

pθ(x |y)

pθ(y)

pθ(y |x)
9

likelihood prior

marginal likelihood / evidence

posterior



Application to three multimedia processing tasks

Methodological 
Background Main Work Conclusion  

& Discussions
Future Research  

DirectionIntroduction

Speech 
enhancement

Multi-Object Tracking Single-Channel Audio 
Source Separation Speech Enhancement
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Main Work Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background

What are probabilistic generative models?

The probabilistic generative models aim to estimate the probability distribution , 
given a set of i.i.d. data samples .

p(x)
(x1, x2, . . . , xN)

12

Generator 
p(x)

…

i.i.d. data samples 
(x1, . . . , xN)

∼



Main Work Conclusion  
& Discussions
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Background

Different types of probabilistic generative models
Implicit generative models Explicit generative models

Discriminator
Generator

z ∼ 𝒩(0, I) Generated data x̂

True data x

True/False

Generative Adversarial Networks[11]

True data distribution 
pdata(x)

Parametric probabilistic model 
 pθ(x)

Explicitly model the probability density function[12, 13, 14, 15]

Maximize log-likelihood: ℒ(x; θ) =
1
N

N

∑
i=1

log pθ(xi)

13

[11] Ian Goodfellow, et al. Generative adversarial nets. Advances in Neural Inform. Process. Systems (NeurIPS). 2014. 
[12] Benigno Uria, et al. Neural autoregressive distribution estimation. J. Mach. Learn. Res. 2016. 
[13] Diederik P. Kingma, et al. Improved variational inference with inverse autoregressive flow. Advances in Neural Inform. Process. Systems (NeurIPS). 2016. 
[14] Yee Whye Teh, et al. Energy-based models for sparse overcomplete representations. J. Mach. Learn. Res. 2003. 
[15] Jonathan Ho, et al. Denoising diffusion probabilistic models. Advances in Neural Inform. Process. Systems (NeurIPS). 2020.



Main Work Conclusion  
& Discussions
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DirectionIntroduction Methodological 

Background

Different types of probabilistic generative models
Explicit generative models

True data distribution 
pdata(x)

Parametric probabilistic model 
 pθ(x)

Explicitly model the probability density function[12, 13, 14, 15]

Maximize log-likelihood: ℒ(x; θ) =
1
N

N

∑
i=1

log pθ(xi)

14

[12] Benigno Uria, et al. Neural autoregressive distribution estimation. J. Mach. Learn. Res. 2016. 
[13] Diederik P. Kingma, et al. Improved variational inference with inverse autoregressive flow. Advances in Neural Inform. Process. Systems (NeurIPS). 2016. 
[14] Yee Whye Teh, et al. Energy-based models for sparse overcomplete representations. J. Mach. Learn. Res. 2003. 
[15] Jonathan Ho, et al. Denoising diffusion probabilistic models. Advances in Neural Inform. Process. Systems (NeurIPS). 2020. 
[16] Diederik P. Kingma, et al. Auto-encoding variational Bayes. Proc. Int. Conf. Learn. Repres. (ICLR). 2014.

pθ(x)

Deep probabilistic generative models

Deep auto-
regressive models[12]

Normalizing flows[13]

Deep energy-
based models[14]

Diffusion models[15]

Deep latent 
variable models[16]



Main Work Conclusion  
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A specific type of explicit generative models

pθ(x) = ∫ pθ(x |z)pθ(z)dz
x

z

15

Latent Variable Models (LVMs)

Latent

Observed



Main Work Conclusion  
& Discussions
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A specific type of explicit generative models

pθ(x) = ∫ pθ(x |z)pθ(z)dz
x

z

16

Latent Variable Models (LVMs)

Latent

Observed
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Example: probabilistic sequential data models

zt−1 zt zt+1

xt−1 xt xt+1

pθ(x1:T) = ∫ pθ(z1)
T

∏
t=2

pθ(zt |zt−1)
T

∏
t=1

pθ(xt |zt)dz1:T

Hidden Markov Model 
(HMM)

 discretez

Linear Dynamical System 
(LDS)

 continuous and 
linear dynamics

zState Space Models 
(SSM)[17]

[17] Christopher M. Bishop. Pattern Recognition and Machine Learning. 2006. 
[18] Rahul Krishnan, et al. Deep kalman filters. Advances in Approx. Bayesian Infer. 2015. 
[19] Marco Fraccaro, et al. Sequential neural models with stochastic layers. Advances in Neural Inform. Process. Systems (NeurIPS). 2016. 
[20] Yingzhen Li, et al. Disentangled sequential autoencoder. Proc. Int. Conf. Mach. Learn. (ICML). 2018. 
[21] Laurent Girin, et al. Dynamical variational autoencoders: A comprehensive review. Found. Trends Mach. Learn. 2021.
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Dynamical Variational Auto-encoders  
(DVAEs)[18,19,20,21]

pθ(x1:T) = ∫ p(x1, z1)
T

∏
t=2

pθ(xt |x1:t−1, z1:t)pθ(zt |x1:t−1, z1:t−1)dz1:T

zt−1 zt zt+1

xt−1 xt xt+1

Non-linear dynamics

Latent 
sequence 

z1:T

Observed 
sequence 

 x1:T

✨
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Example: probabilistic sequential data models

zt−1 zt zt+1

xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

Video Audio

Text Time series

Help us to model and understand complex real-world data.

18
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Another perspective of LVMs: inferring the latent variables

x

z ?

19

Latent

Observed
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Another perspective of LVMs: inferring the latent variables

pθ(x |z)

Infer the unknown latent variables: Bayesian Inference

pθ(z |x) =
pθ(x |z)pθ(z)

∫ pθ(x |z)pθ(z)dz

likelihood prior

marginal likelihood / evidence

posterior

20

pθ(z)



pθ(z |x) =
pθ(x |z)pθ(z)

∫ pθ(x |z)pθ(z)dz

prior

Main Work Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background

Another perspective of LVMs: inferring the latent variables

pθ(x |z)

Infer the unknown latent variables: Bayesian Inference

Intractable!

Solution: introduce a variational distribution to approximate the posterior.[22, 23]

q(z) ≈ pθ(z |x)

likelihood

marginal likelihood / evidence

posterior

21[22] Martin J. Wainwright, et al. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 2008. 
[23] David M. Blei, et al. Variational inference: A review for statisticians. J. Amer. Statist. Assoc. 2017

pθ(z)



[16] Diederik P. Kingma, et al. Auto-encoding variational Bayes. Proc. Int. Conf. Learn. Repres. (ICLR). 2014. 
[24] Giorgio Parisi. Statistical Field Theory. 1988. 
[25] Michael I. Jordan, et al. An introduction to variational methods for graphical models. Mach. Learn. 1999. 
[26] Samuel J. Gershman, et al. Amortized inference in probabilistic reasoning. Proc.  Annual Meeting of the Cognitive Science Society. 2014 
[27] Danilo Jimenez Rezende, et al. Stochastic backpropagation and approximate inference in deep generative models. Proc. Int. Conf. Mach. Learn. (ICML). 2014.
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Variational inference and parameter estimation

Maximize ELBO: ℒ(q, θ) = 𝔼q(z)[log pθ(x, z) − log q(z)] ≤ log pθ(x)

• Mean-field approximation:[24]                                                Variational EM algorithm[25] 

• Amortized inference:[26]         VAE[16,27]ℒ(ϕ, θ) = 𝔼qϕ(z)[log pθ(x |z)] − KL(qϕ(z) | |pθ(z))

q(z) =
M

∏
i=1

qi(zi |x)

22
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Part 1 
Mixture of DVAEs for multi-source 
trajectory modeling and separation

24

Xiaoyu Lin, Laurent Girin, and Xavier Alameda-Pineda. “Mixture of dynamical variational autoencoders for multi-
source trajectory modeling and separation.” In Transactions on Machine Learning Research (TMLR), 2023.



Problem setting

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

T frames

ℝO

T frames

ℝS

Separating multiple 
sources in sequential data Application scenarios

Multi-Object Tracking 
(MOT) 

Given a sequence of video, track 
the objects of interest and assign 
a unique ID to each of the object.

Single-Channel 
Audio Source Separation 

(SC-ASS) 
Given a mixture of audio signals, 
separate different audio sources.

o1:T,1:Kt
s1:T,1:N

Estimate
P(s1:T,1:N |o1:T,1:Kt

)
25



•  Model  with domain specific knowledge.pθ(o |s)

Proposed solution

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

pθ(s |o) =
pθ(o |s)pθ(s)

∫ pθ(o |s)pθ(s)ds

likelihood prior

marginal likelihood / 
evidence

posterior

Leveraging Bayesian inference

DVAE model

Single trajectory s1:T

Encoder Decoder

Reconstructed 
trajectory ̂s1:T

ϕz θsz

qϕz
(z1:T |s1:T) pθsz

(s1:T, z1:T)

T frames

ℝS

T frames

ℝS

•  Model  with a dynamical variational auto-encoder 
(DVAE).

pθ(s)

•  Infer  with variational inference methodology.pθ(s |o)

26



: observations. 

 : true source vectors. 

: latent variables of DVAE. 

 : discrete assignment variables, 

 indicates the observation  is assigned to source . 

Observed variable:         Latent variables: , ,  

Objective: Estimate the posterior distribution  .

o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

s = {s1:T,1:N} ∈ ℝT×N×S

z = {z1:T,1:N} ∈ ℝT×N×L

w = {w1:T,1:Kt
} ∈ {1,...,N}T×Kt

wtk = n otk n

o s z w

p(s, z, w |o)

Probabilistic model

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

o

s

w

z

27

Definition of random variables



Probabilistic model

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

zt+1,:zt−1,: zt,:

st−1,: st,: st+1,:

ot,:ot−1,:

wt−1,: wt,: wt+1,:

ot+1,:

Extended graphical model over time framesFolded graphical model

z

s

o
w

Generative model: .pθ(o, w, s, z) = pθo
(o |w, s)pθw

(w)pθsz
(s, z)

Intractable true posterior distribution .pθ(s, z, w |o)
Inference model: factorized approximation .qϕ(s, z, w |o) = qϕs

(s |o)qϕz
(z |s)qϕw

(w |o) ≈ pθ(s, z, w |o)

Optimization: maximizing the ELBO .ℒ(θ, ϕ; o) = 𝔼qϕ(s,z,w|o)[log pθ(o, s, z, w) − log qϕ(s, z, w |o)]
28



MixDVAE algorithm

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

• Pre-train the DVAE model using a 
single-source trajectory dataset. 

• Estimate model parameters and 
infer posterior distributions using 
our Variational Expectation-
Maximization (VEM) algorithm.

29

Two-step learning framework



Estimation of ̂st,1:N

MixDVAE algorithm

E-Z Step
Update ϕz

Update 
 , θz θs

pθsz
(s, z)qϕz

(z |s)

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

ℝS

Assignment  
variable η(i)

tkn

E-W Step
qϕw

(w |o)pθo
(o |w, s)

Update  
Φ(i)

tk

M StepObservations  
at frame  t

ot,1:Kt

ℝO

Source vectors 
estimated 

 at iteration  i − 1
s(i−1)

1:T,1:N T frames

ℝS ϕ(i)
z θ(i)

sz

DVAE model Offline 
pre-training

ϕz θsz

T frames

ℝS

T frames

ℝS

Estimated source 
mean vector and  

covariance matrix 
, m(i)

t,1:N V(i)
t,1:N

E-S Step qϕs
(s |o)

MixDVAE 
algorithm

DVAE predicted 
mean and  

variance vectors  

  μθs
(s(i−1)

1:t−1,1:N, z1:t,1:N)
νθs

(s(i−1)
1:t−1,1:N, z1:t,1:N)

• Pre-train the DVAE model using a 
single-source trajectory dataset. 

• Estimate model parameters and 
infer posterior distributions using 
our Variational Expectation-
Maximization (VEM) algorithm.

30



Applications to MOT

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

4 main sub-tasks in MOT[28,29,30] 

• Extracting source observations 
(detections) at each time frame. 

• Modeling the dynamics of the 
sources. 

• Associating observations to sources 
consistently over time. 

• Accounting for birth and death 
process of source trajectories.

31
[28] Ba-Ngu Vo, et al. Multitarget Tracking. Wiley Encyclopedia of Electrical and Electronics Engineering. 2015. 
[29] Wenhan Luo, et al. Multiple object tracking: A literature review. Artif. Intell. 2021. 
[30] Gioele Ciaparrone, et al. Deep learning in video multi-object tracking: A survey. Neural Comp. 2020.



Applications to MOT
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Tracking-by-detection, known number of sources
32

4 main sub-tasks in MOT[28,29,30] 

• Extracting source observations 
(detections) at each time frame. 

• Modeling the dynamics of the 
sources. 

• Associating observations to sources 
consistently over time. 

• Accounting for birth and death 
process of source trajectories.

[28] Ba-Ngu Vo, et al. Multitarget Tracking. Wiley Encyclopedia of Electrical and Electronics Engineering. 2015. 
[29] Wenhan Luo, et al. Multiple object tracking: A literature review. Artif. Intell. 2021. 
[30] Gioele Ciaparrone, et al. Deep learning in video multi-object tracking: A survey. Neural Comp. 2020.



Probabilistic model of MOT

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

: coordinates of detection bounding boxes. o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

o

33

Definition of random variables



Probabilistic model of MOT

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

: coordinates of detection bounding boxes. 

 : true coordinates of sources. 

o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

s = {s1:T,1:N} ∈ ℝT×N×S s

o

34

Definition of random variables



Probabilistic model of MOT

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

: coordinates of detection bounding boxes. 

 : true coordinates of sources. 

: latent variables of DVAE. 

o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

s = {s1:T,1:N} ∈ ℝT×N×S

z = {z1:T,1:N} ∈ ℝT×N×L

z

s

o

35

Definition of random variables



Probabilistic model of MOT

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

: coordinates of detection bounding boxes. 

 : true coordinates of sources. 

: latent variables of DVAE. 

 : discrete assignment variables, 

 indicates the detection  is assigned to source .

o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

s = {s1:T,1:N} ∈ ℝT×N×S

z = {z1:T,1:N} ∈ ℝT×N×L

w = {w1:T,1:Kt
} ∈ {1,...,N}T×Kt

wtk = n otk n

z

s

o

w

S1 S2
S3

36

Definition of random variables



Experimental settings

Conclusion  
& Discussions
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DVAE pre-training 
A synthetic single-source motion trajectories dataset 
Unsupervised MOT Evaluation 
MOT17-3T dataset created from the MOT17[31] training set:  

• Subsequences of length  (  frames are tested) 
• 3 tracking sources per test data sample

T T = 60,120,300

37

Datasets

Baselines
ArTIST[32] (LSTM-based supervised method), VKF[33] (linear filtering method), Deep AR (LSTM-
based filtering method)

Evaluation metrics[34,35]

Multi-object tracking accuracy (MOTA), number of identity switches (IDS), false positives (FP), false 
negatives (FN)

[31] Patrick Dendorfer, et al. MOTChallenge: A benchmark for single-camera multiple target tracking. Proc. IEEE Int. Conf. Computer Vision (ICCV). 2021. 
[32] Fatemeh Saleh, et al. Probabilistic tracklet scoring and inpainting for multiple object tracking. Proc. IEEE Int. Conf. Computer Vision Pattern Recogn. (CVPR). 2021. 
[33] Yutong Ban, et al. Variational bayesian inference for audio-visual tracking of multiple speakers. IEEE Trans. Pattern Anal. Mach. Intell. 2021. 
[34] Keni Bernardin, et al. Evaluating multiple object tracking performance: The CLEAR MOT metrics. EURASIP J. Image Video Process. 2008 
[35] Ergys Ristani, et al. Performance measures and a data set for multi-target, multi-camera tracking. Proc. Europ. Conf. Computer Vision (ECCV). 2016.



Quantitative analysis
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38

0%

25%

50%

75%

100%

ArTIST VKF Deep AR MixDVAE

0,832
0,7550,744

0,535

MOTA

0,0%

5,5%

11,0%

16,5%

22,0%

ArTIST VKF Deep AR MixDVAE
0,0230,0260,029

0,201

%IDS

0,0%

3,5%

7,0%

10,5%

14,0%

ArTIST VKF Deep AR MixDVAE

0,073

0,1210,114
0,132

%FP

0,0%

3,5%

7,0%

10,5%

14,0%

ArTIST VKF Deep AR MixDVAE

0,073

0,1210,114
0,132

%FN

= 1 −
∑t (FNt + FPt + IDSt)

∑t GTt
=

∑t IDSt

∑t GTt

=
∑t FPt

∑t GTt
=

∑t FNt

∑t GTt

Evaluation on long sequences (  ).T = 300



t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 t = 70 t = 80 t = 90

Ground 
Truth

Detection

ArTIST

VKF

Deep AR

MixDVAE

m 2 

m 1 

m 3 
m 2 
m 1 

m 3 
m 2 
m 1 

m 3 m 2 
m 1 

m 3 m 2 
m 1 

m 3 
m 2 

m 1 
m 3 

m 2 m 1 m 3 m 2 
m 1 m 3 m 2 

m 1 m 3 m 2 
m 1 

m 3 

Qualitative analysis
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39

Robust tracking with frequent occlusions.



Applications to SC-ASS
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Separation 
Model

Mixed signal TF - Spectrogram 
Mixture

STFT

iSTFT

Key question: how to obtain the masks?

TF - Spectrogram 
Separated sources

Mask-based method[36,37,38,39]

40

[36] Emmanuel Vincent, et al. Audio Source Separation and Speech Enhancement. 2018. 
[37] Ozgur Yilmaz and Scott Rickard. Blind separation of speech mixtures via timefrequency masking. IEEE Trans. Signal Process. 2004. 
[38] Dorothea Kolossa, et al. Nonlinear postprocessing for blind speech separation. Independent Component Analysis and Blind Signal Separation. 2004. 
[39] DeLiang Wang and Guy J. Brown. Computational Auditory Scene Analysis: Principles, Algorithms, and Applications. 2006.
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o

T

F

41

Definition of random variables
: STFT spectrogram of the observed mixture signal. o = {o1:T,1:Kt

} ∈ ℝT×Kt×O
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Definition of random variables
: STFT spectrogram of the observed mixture signal. 

 : STFT spectrograms of  sources. 

o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

s = {s1:T,1:N} ∈ ℝT×N×S N
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Definition of random variables
: STFT spectrogram of the observed mixture signal. 

 : STFT spectrograms of  sources. 

: latent variables of DVAE. 

o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

s = {s1:T,1:N} ∈ ℝT×N×S N
z = {z1:T,1:N} ∈ ℝT×N×L
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Definition of random variables
: STFT spectrogram of the observed mixture signal. 

 : STFT spectrograms of  sources. 

: latent variables of DVAE. 

 : discrete assignment variables, 

 indicates the mixture signal at TF bin [t, f]  is assigned to source .

o = {o1:T,1:Kt
} ∈ ℝT×Kt×O

s = {s1:T,1:N} ∈ ℝT×N×S N
z = {z1:T,1:N} ∈ ℝT×N×L

w = {w1:T,1:Kt
} ∈ {1,...,N}T×Kt

wtk = n ot,f n



Applications to SC-ASS

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

Pre-train a DVAE model on each single audio source signal

STFT
ϕz θsz

z1:T

ISTFT

Original speech signal Reconstructed speech signalvθs,1:T

Sampling

s1:T

STFT
ϕz θsz

z1:T

ISTFT

Original music signal Reconstructed music signalvθs,1:T

Sampling

s1:T
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DVAE pre-training 
• Wall Street Journal (WSJ0) dataset[40] 
• Chinese Bamboo Flute (CBF) dataset[41] 
Weakly-supervised SC-ASS Evaluation 
Mixture signals created from the WSJ0 and CBF test sets with different speech-to-music ratios and 
three different sequence lengths ( )T = 50,100,300

46

Datasets

Baselines
VKF (linear filtering method), Deep AR (LSTM-based filtering method), MixIT[42]  (DL-based 
unsupervised method), Vanilla NMF[43,44], temporal NMF[45] (statistical method)

Evaluation metrics
Root mean squared error (RMSE), scale-invariant signal-to-distortion ratio (SI-SDR)[46] (in dB), 
perceptual evaluation of speech quality (PESQ)[47] (in ).[−0.5,4.5]

[40] John S. Garofolo, et al. CSR-I (WSJ0) Sennheiser LDC93S6B. Philadelphia: Linguistic Data Consortium. 1993. 
[41] Changhong Wang, et al. Adaptive scattering transforms for playing technique recognition. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2022. 
[42] Scott Wisdom, et al. Unsupervised sound separation using mixture invariant training. Advances in Neural Inform. Process. Systems (NeurIPS). 2020. 
[43] Cédric Févotte, et al. Single-Channel Audio Source Separation with NMF: Divergences, Constraints and Algorithms. 2018. 
[44] Alexey Ozerov, et al. Coding-Based Informed Source Separation: Nonnegative Tensor Factorization Approach. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2013. 
[45] Tuomas Virtanen. Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio, Speech, Lang. Process. 2007. 
[46] Jonathan Le Roux, et al. SDR–Half-baked or well done? Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). 2019. 
[47] Antony Rix, et al. Perceptual evaluation of speech quality (PESQ) - A new method for speech quality assessment of telephone networks and codecs. Proc. IEEE Int. Conf. Acoust., Speech, 
Signal Process. (ICASSP). 2001.
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Part 2 
Unsupervised speech enhancement 

with deep dynamical probabilistic 
generative models

49

Xiaoyu Lin, Simon Leglaive, Laurent Girin, and Xavier Alameda-Pineda. “Unsupervised speech enhancement 
with deep dynamical generative speech and noise models.” In Proceedings Interspeech Conference, 2023.
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Clean speech s1:T

Noisy speech 
 x1:T = s1:T + n1:T

Speech 
Enhancement 

Model
Recovered clean 

speech ̂s1:T

Noise n1:T

Objective: recover clean speech from noisy speech signals.
Estimate 

p(s1:T |x1:T)

50
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•Pre-train a DVAE model on clean speech signals

ISTFTSTFT
ϕz θsz

z1:T
Original clean 
speech signal 

Reconstructed clean 
speech signal

vθs,1:T

Sampling

s1:T

pθ(s |x) =
pθ(x |s)pθ(s)

∫ pθ(x |s)pθ(s)ds

likelihood prior

marginal likelihood / 
evidence

posterior

51
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•Speech enhancement with the pre-trained DVAE and DDGM-based noise model

̂st =
vθs,t

vθs,t + vθn,t
xt

Inference

Encoder ϕz

(Fine-tuned)

Estimated clean 
speech variance vθs

Estimated noise  
variance vθn

Training 
ℒ(θn, ϕz; x1:T)

Estimated 
clean speech 
spectrogram

Noisy speech

STFT

x1:T z1:T

Sampling

Estimated clean 
speech signal

iSTFT

(Fixed)

Speech model θsz

Noise model θn
(Trained)

Pre-trained DVAE model

ϕz θsz

DVAE latent variables (LV): vθn,t = vθn,t(z1:T)

pθ(x |s) = 𝒩c(x; s, vθn
)

52

likelihood
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•Speech enhancement with the pre-trained DVAE and DDGM-based noise model

̂st =
vθs,t

vθs,t + vθn,t
xt

Inference

Encoder ϕz

(Fine-tuned)

Estimated clean 
speech variance vθs

Estimated noise  
variance vθn

Training 
ℒ(θn, ϕz; x1:T)

Estimated 
clean speech 
spectrogram

Noisy speech

STFT

x1:T z1:T

Sampling

Estimated clean 
speech signal

iSTFT

(Fixed)

Speech model θsz

Noise model θn
(Trained)

Pre-trained DVAE model

ϕz θsz

Noisy observations (NO): vθn,t = vθn,t(x1:t−1)

pθ(x |s) = 𝒩c(x; s, vθn
)
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•Speech enhancement with the pre-trained DVAE and DDGM-based noise model

̂st =
vθs,t

vθs,t + vθn,t
xt

Inference

Encoder ϕz

(Fine-tuned)

Estimated clean 
speech variance vθs

Estimated noise  
variance vθn

Training 
ℒ(θn, ϕz; x1:T)

Estimated 
clean speech 
spectrogram

Noisy speech

STFT

x1:T z1:T

Sampling

Estimated clean 
speech signal

iSTFT

(Fixed)

Speech model θsz

Noise model θn
(Trained)

Pre-trained DVAE model

ϕz θsz

Noisy observations and latent variables (NOLV): vθn,t = vθn,t(x1:t−1, z1:t)

pθ(x |s) = 𝒩c(x; s, vθn
)
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Large scale noisy training set 
{x1

1:T, . . . , xN
1:T}

Optimize  on the whole training setℒ(θn, ϕz; x1:T)

, θtr
n ϕtr

z  ̂st =
vθs,t

vθs,t + vθtr
n ,t

xt

Forward pass

Test sequence x(i)
1:T

Training Inference

DDGM-based 
SE model

DDGM-based 
SE model  

, θtr
n ϕtr

z

•Unsupervised noise-dependent (U-ND).

•Unsupervised noise-agnostic (U-NA).

Optimize  on each test noisy sequence ℒ(θn, ϕz; x1:T) xi
1:T

Test sequence x(i)
1:T

, θ(i)
n ϕ(i)

z  ̂st =
vθs,t

vθs,t + vθ(i)
n ,t

xt

Training & Inference

DDGM-based 
SE model

•U-NA fine-tuning after U-ND training (U-NDA).
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• VoiceBank-DEMAND (VB-DMD)[48]. 
• WSJ0-QUT[49].

56

Datasets

Baselines
• Supervised methods: Open-Unmix (UMX)[50] (LSTM-based method), MetricGAN+[51] (LSTM-based 
method), CDiffuSE[52] (diffusion-based method), SGMSE+[53] (diffusion-based method). 

• Unsupervised methods: MetricGAN-U[54], NyTT[55], RVAE-VEM[56] (DVAE+NMF noise model).
Evaluation metrics

• Enhancement performance: SI-SDR, PESQ (in [-0.5, 4.5]), extended short-time objective intelligibility(ESTOI)
[57] (in [0, 1]). 

• Computational efficiency: Real-time factor (RTF) which is the time required to process 1 second of audio.
[48] Cassia Valentini-Botinhao, et al. Investigating RNN-based speech enhancement methods for noise-robust text-to-speech. Proc. Speech Synthesis Workshop. 2016. 
[49] Simon Leglaive, et al. A recurrent variational autoencoder for speech enhancement. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). 2020. 
[50] Fabian-Robert Stöter,et al. Open-Unmix – A reference implementation for music source separation. J. Open Source Software. 2019. 
[51] Szu-Wei Fu, et al. MetricGAN+: An improved version of MetricGAN for speech enhancement. Proc. Interspeech Conf. 2021. 
[52] Yen-Ju Lu, et al. Conditional diffusion probabilistic model for speech enhancement.Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). 2022. 
[53] Julius Richter, et al. Speech enhancement and dereverberation with diffusion-based generative models. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2023. 
[54] Szu-Wei Fu, et al. Unsupervised speech enhancement / dereverberation based only on noisy / reverberated speech. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). 2022. 
[55] Takuya Fujimura, et al. A training strategy for DNN-based speech enhancement without clean speech. Proc. Europ. Signal Process. Conf. (EUSIPCO). 2021 
[56] Xiaoyu Bie, et al. Unsupervised speech enhancement using dynamical variational autoencoders. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2022. 
[57] Cees H. Taal, et al. An algorithm for intelligibility prediction of time–frequency weighted noisy speech.  IEEE Trans. Audio, Speech, Lang. Process. 2011.

Pre-processing
STFT coefficients: 64-ms sine window (1,024 samples) and 75%-overlap (256-sample shift).
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Comparison of different noise models with different training configuations

57

RVAE-LV: vθn,t = vθn,t(z1:T)

RVAE-NO: vθn,t = vθn,t(x1:t−1)

RVAE-NOLV: vθn,t = vθn,t(x1:t−1, z1:t)

•Different noise models
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Comparison with baseline models

58

•Different training 
configurations

U-NA

Performance

U-ND

Inference speed

U-NDA

Further improvements

>

U-NA U-ND< <



Part 3 
Speech modeling with a hierarchical 

Transformer dynamical VAE

59

Xiaoyu Lin, Xiaoyu Bie, Simon Leglaive, Laurent Girin, and Xavier Alameda-Pineda. “Speech modeling with a 
hierarchical Transformer dynamical VAE.” In IEEE International Conference on Acoustics, Speech and Signal 

Processing, 2023.



Speech modeling with DVAEs

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

Temporal dependencies of different DVAEs
zt−1 zt zt+1

st−1 st st+1

zt−1 zt zt+1

st−1 st st+1

zt−1 zt zt+1

st−1 st st+1

zt−1 zt zt+1

st−1 st st+1

VAE[16,27] DKF[18] RVAE[49] SRNN[19]

pθs
(st |z1:t, s1:t−1)

pθz
(zt |z1:t−1, s1:t−1)

ϕz θsz

qϕz
(zt |z1:t−1, s1:T) z1:T

Sampling

Power spectrogram of 
the speech s1:T

Reconstructed speech 
spectrogram ̂s1:T
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[18] Rahul Krishnan, et al. Deep kalman filters. Advances in Approx. Bayesian Infer. 2015. 
[19] Marco Fraccaro, et al. Sequential neural models with stochastic layers. Advances in Neural Inform. Process. Systems (NeurIPS). 2016. 
[16] Diederik P. Kingma, et al. Auto-encoding variational Bayes. Proc. Int. Conf. Learn. Repres. (ICLR). 2014. 
[27] Danilo Jimenez Rezende, et al. Stochastic backpropagation and approximate inference in deep generative models. Proc. Int. Conf. Mach. Learn. (ICML). 2014. 
[49] Simon Leglaive, et al. A recurrent variational autoencoder for speech enhancement. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). 2020.



RNN-based auto-regressive (AR) model training issues

Conclusion  
& Discussions

Future Research  
DirectionIntroduction Methodological 

Background Main Work

Teacher-forcing (TF)[58] training procedure

Scheduled-sampling (SS)[59] training procedure

…

Ground truth past values 
 s1:t−1

RNN

̂st = f(s1:t−1)

Issue: At inference time we can only use the 
generated previous values to predict , which 
will cause large accumulated errors.

̂st

…

Predicted past values 
 ̂s1:t−1

RNN

̂st = f( ̂s1:t−1)

Gradually replace the 
GT past values by 

predicted past values 
along training 

iterations.

Limitations: requirements of a well-designed 
sampling scheduler to guarantee the 
performance.

61[58] Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent neural networks. Neural Comp. 1989. 
[59] Samy Bengio, et al. Scheduled sampling for sequence prediction with recurrent neural networks. Advances in Neural Inform. Process. Systems (NeurIPS). 2015.
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Sampling

Positional  
Encoding

Encoder

Input 
embedding

Multi-Head 
Attention

Layer 
Norm

Feed  
Forward

Linear
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Positional  
Encoding

 s1:T

Concatenation  and 
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z1:T
w

s0:T−1
Shifted right
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Positional  
Encoding
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Feature 
extraction

LSTM
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(w |x1:T)

Sampling 
And repeating
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w
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[60] Xiaoyu Bie, et al. HiT-DVAE: Human motion generation via Hierarchical Transformer Dynamical VAE. arXiv preprint arxiv:2204.01565, 2022.
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Model training by maximizing the Evidence Lower BOund (ELBO)

ℒ(θ, ϕ; s1:T) = − DKL(qϕw
(w |s1:T)pθw

(w)) −
T

∑
t=1

𝔼qϕzqϕw[dIS( |st |
2 , vθs,t) + DKL(qϕz

(zt |s1:T, w) ∥ pθz
(zt |s1:t−1, z1:t−1, w))]

reconstruction term regularization term for zregularization term for w

pθz
(zt |s1:t−1, z1:t−1, w)

Sampling

Positional  
Encoding

Encoder

Input 
embedding

Multi-Head 
Attention

Layer 
Norm

Feed  
Forward

Linear

 s1:T
qϕz

(zt |s1:T, w)
z1:T

Layer 
Norm

Feature 
extraction

LSTM

qϕw
(w |x1:T)

Sampling 
And repeating
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w

Input 
embedding

Linear

Input 
embedding

Multi-Head 
Attention

Multi-Head 
Attention

Layer 
Norm

Layer 
Norm

Layer 
Norm

Feed  
Forward

Decoder

Positional  
Encoding

Concatenation  or   
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z1:T z0:T−1
w s0:T−1

Shifted right

pθs
(st |s1:t−1, z1:t, w)

or

Q

K
V

Causal Mask Causal Mask
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•Wall Street Journal (WSJ0) dataset. 
•Voice Bank (VB) corpus[61].

64

Datasets

Baselines
VAE, DKF, RVAE, SRNN (trained in SS), SRNN (trained in TF).

Evaluation metrics
•Speech analysis-resynthesis: RMSE, SI-SDR, PESQ, ESTOI. 
•Speech generation: Fréchet Deep Speech Distance (FDSD)[62].

[61] Christophe Veaux, et al. The Voice Bank corpus: Design, collection and data analysis of a large regional accent speech database. Proceedings of International Committee for Co-ordination 
and Standardisation of Speech Databases, 2013. 
[62] Mikołaj Bińkowski, et al. High fidelity speech synthesis with adversarial networks. Proc. Int. Conf. Learn. Repres. (ICLR). 2020
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Experimental results for speech generation
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Power spectrograms generated by the models and phase reconstructed 
with the Griffin-Lim[63] algorithm.

66
[63] Daniel W. Griffin and Jae S. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust., Speech, Signal Process. 1984.
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Swap the  to reconstruct the spectrograms.w
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Conclusion and Discussions

68



Future Research  
DirectionIntroduction Methodological 

Background Main Work Conclusion  
& Discussions

A learning framework based on Bayesian inference

pθ(s |o) =
pθ(o |s)pθ(s)

∫ pθ(o |s)pθ(s)ds

likelihood prior

marginal likelihood / 
evidence

posterior

•  Model  with domain specific knowledge.pθ(o |s)
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Interpretability

= ?Learning 
Machine 

fθ( ⋅ ) ∈ Θ

Interpretable AI

Bayesian inference methods are inherently interpretable.
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A learning framework based on Bayesian inference

pθ(s |o) =
pθ(o |s)pθ(s)

∫ pθ(o |s)pθ(s)ds

likelihood prior

marginal likelihood / 
evidence

posterior

•  Model  with domain specific knowledge.pθ(o |s)

DVAE model

s1:T

Encoder Decoder
̂s1:T

ϕz θsz

qϕz
(z1:T |s1:T) pθsz

(s1:T, z1:T)

T frames

ℝS

T frames

ℝS

•  Model  with a dynamical variational auto-encoder 
(DVAE).

pθ(s)
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Data efficiency

Un-/weakly supervised learning framework. 
No requirement for very large annotated training dataset.

?
Health care Industrial production Finance
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A learning framework based on Bayesian inference

pθ(s |o) =
pθ(o |s)pθ(s)

∫ pθ(o |s)pθ(s)ds

likelihood prior

marginal likelihood / 
evidence

posterior

•  Model  with domain specific knowledge.pθ(o |s)

DVAE model

s1:T

Encoder Decoder
̂s1:T

ϕz θsz

qϕz
(z1:T |s1:T) pθsz

(s1:T, z1:T)

T frames

ℝS

T frames

ℝS

•  Model  with a dynamical variational auto-encoder 
(DVAE).

pθ(s)

•  Infer  with variational inference methodology 

- VEM for MOT and SC-ASS 

- Gradient-based optimization for SE

pθ(s |o)
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Out-of-distribution generalization

Integrating the pre-trained DVAE model into another LVGM has 
some link to the out-of-distribution generalization problem.

i.i.d. training data samples 
(xtrain

1 , . . . , xtrain
N ) ∼ p(x)

…

Training

Inference
test data samples xtest ∼ q(x)

ŷtrain = fθ(xtrain)

ŷtest = fθ(xtest) ?Learning 
Machine 

fθ( ⋅ ) ∈ Θ

Out-of-distribution 
Generalization
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A learning framework based on Bayesian inference

pθ(s |o) =
pθ(o |s)pθ(s)

∫ pθ(o |s)pθ(s)ds

likelihood prior

marginal likelihood / 
evidence

posterior

•  Model  with domain specific knowledge.pθ(o |s)

DVAE model

s1:T

Encoder Decoder
̂s1:T

ϕz θsz

qϕz
(z1:T |s1:T) pθsz

(s1:T, z1:T)

T frames

ℝS

T frames

ℝS

•  Model  with a dynamical variational auto-encoder 
(DVAE).

pθ(s)

•  Infer  with variational inference methodology 

- VEM for MOT and SC-ASS. 

- Gradient-based optimization for SE.

pθ(s |o)

•  A novel DVAE architecture combined with Transformers: 
HiT/LigHT-DVAE.
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Advantages and limitations of this method

Advantages Limitations

• Data-frugal: no need for large amount 
of annotated data. 

• Interpretability: the possibility of 
incorporating human-level prior 
knowledge into the model.

• Computational complexity: the VEM 
algorithm can be very time consuming. 

• Subpar performance compared to 
fully-supervised methods.

Remarks
• The model’s performance highly depends on the robustness of the pre-trained DVAE models. 

• The latent variables learned by the DVAE models are still not well understood[64, 65, 66].
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Some reflections on the future research directions

• What are the other learning principles / paradigms that can generalize well for out-of-
distribution data samples (strong generalization ability)[67,68,69,70]? 

• How to better understand the latent representations learned by the DVAE models and 
other generative models[71,72]? 

• What are the potential pathways to make the AI systems more robust, reliable and 
controllable so that they can be applied to more risk-sensitive domains[73,74]?
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Thanks for your attention.
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