
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Mathématiques et Informatique
Unité de recherche : Laboratoire Jean Kuntzmann

Modèles génératifs à variables latentes profondes pour le traitement
multimédia

Deep latent-variable generative models for multimedia processing

Présentée par :

Xiaoyu LIN
Direction de thèse :

Xavier ALAMEDA-PINEDA
CHARGE DE RECHERCHE HDR, CENTRE INRIA UNIVERSITE
GRENOBLE ALPES

Directeur de thèse

Laurent GIRIN
PROFESSEUR DES UNIVERSITES, GRENOBLE INP - UGA

Co-directeur de thèse

Rapporteurs :
GAËL RICHARD
PROFESSEUR, TELECOM PARIS
DAVID PICARD
DIRECTEUR DE RECHERCHE, ECOLE NATIONALE DES PONTS ET CHAUSSEES

Thèse soutenue publiquement le 25 juin 2024, devant le jury composé de :
JEAN-MARC BROSSIER,
PROFESSEUR DES UNIVERSITES, GRENOBLE INP

Président

XAVIER ALAMEDA PINEDA,
CHARGE DE RECHERCHE HDR, CENTRE INRIA UNIVERSITE
GRENOBLE ALPES

Directeur de thèse

LAURENT GIRIN,
PROFESSEUR DES UNIVERSITES, GRENOBLE INP

Co-directeur de thèse

GAËL RICHARD,
PROFESSEUR, TELECOM PARIS

Rapporteur

DAVID PICARD,
DIRECTEUR DE RECHERCHE, ECOLE NATIONALE DES PONTS ET
CHAUSSEES

Rapporteur

SHAI BEN-DAVID,
FULL PROFESSOR, UNIVERSITY OF WATERLOO

Examinateur

DOROTHEA KOLOSSA,
FULL PROFESSOR, TECHNISCHE UNIVERSITÄT BERLIN

Examinatrice

2

ABSTRACT

Deep probabilistic generative models hold a crucial position within the realm of machine

learning research. They serve as powerful tools for comprehending complex real-world

data, such as image, audio, and text, by modeling their underlying distributions. This

capability further enables the generation of new data samples. Moreover, these models

can be utilized to discover hidden structures and the intrinsic factors of variation within

data. The data representations that are learned through this process can be leveraged

across a spectrum of downstream prediction tasks, thereby enhancing the decision-making

process.

Another research direction involves leveraging the flexibility and robust generalization

ability of deep probabilistic generative models for solving intricate scientific and engi-

neering problems. Though supervised deep learning methods applied to sophisticatedly

designed neural architectures have achieved state-of-the-art performance across various

domains, their practical application to real-world situations remains constrained. These

limitations arise from the necessity of extensive volumes of annotated data for training

and a shortfall in model interpretability. In this PhD work, we explore an alternative

approach using deep probabilistic generative models within an unsupervised or weakly

supervised framework to overcome these hurdles. Specifically, the proposed approach

involves initially pre-training a deep probabilistic generative model (DPGM) with natural

or synthetic signals to embed prior knowledge about the complex data patterns. Sub-

sequently, this pre-trained model is integrated into an extended DPGM to address the

specific practical problem.

3

4

Our research focuses on a specific type of DPGM designed for sequential data, referred

to as dynamical variational auto-encoder (DVAE). DVAEs are a family of deep latent

variable models extended from the variational auto-encoder (VAE) for sequential data

modeling. They leverage a sequence of latent vectors to depict the intricate temporal

dependencies within the sequential observed data. By integrating DVAEs within a DPGM,

we address a range of audio and visual tasks, namely multi-object tracking (MOT), single-

channel audio source separation (SC-ASS), and speech enhancement (SE). The solutions

are derived based on variational inference (VI) methods. Additionally, we also investigate

a novel architecture, HiT-DVAE, which incorporates the Transformer architecture within

the probabilistic framework of DVAEs. HiT-DVAE and its variant, LigHT-DVAE, both

demonstrate excellent performance in speech modeling through robust sequential data

handling.

The findings from our experiments confirm the potential of DPGMs to address real-

world problems with limited labeled data, offering scalable and interpretable solutions.

Furthermore, the introduction of HiT-DVAE represents a significant advancement in the

field, combining the strengths of Transformer architectures with probabilistic modeling

for enhanced sequential data analysis. These works not only contribute to the theoretical

understanding of DPGMs, but also demonstrate their practical applicability across various

domains, laying the groundwork for future innovations in machine learning.

RÉSUMÉ

Les modèles génératifs probabilistes profonds occupent une position crutiale dans le do-

maine de la recherche en apprentissage automatique. Ces sont des outils puissants pour

comprendre des données réelles complexes, telles que les images, les signaux audios et

le texte, en modélisant leurs distributions. Cette capacité permet également la génération

de nouveaux échantillons de données. De plus, ces modèles peuvent être utilisés pour

découvrir des structures cachées et les facteurs intrinsèques de variation au sein des

données. Les représentations des données apprises à travers ce processus peuvent être

exploitées dans un spectre de tâches de prédiction en aval, améliorant ainsi le processus

décisionnel.

Une autre direction de recherche explore comment la flexibilité et la capacité de généralisation

robuste des modèles génératifs probabilistes profonds peut être utilisée pour résoudre des

problèmes scientifiques et d’ingénierie complexes. Bien que les méthodes d’apprentissage

profond supervisées appliquées sur des architectures neuronales sophistiquées obtien-

nent les performances de l’état de l’art dans divers domaines, leur application pratique

aux situations réelles reste limitée par un certain nombre de facteurs. Ces limitations

sont par exemple la nécessité d’un immense volume de données annotées et un certain

déficit en interprétabilité des modèles. Dans ce travail de thèse, nous explorons une ap-

proche alternative utilisant des modèles génératifs probabilistes profonds dans un cadre

non supervisé ou faiblement supervisé pour surmonter ces obstacles. Plus précisément,

l’approche proposée implique le pré-entrainement initial d’un modèle génératif proba-

biliste profond (DPGM) avec des signaux naturels ou synthétiques pour intégrer des con-

5

6

naissances préalables sur les données complexes. Ensuite, ce modèle pré-entrainé est

intégré dans un DPGM plus large, conçu pour traiter le problème pratique considéré.

Notre recherche se concentre sur un type spécifique de DPGM conçu pour les données

séquentielles, appelé auto-encodeur variationnel dynamique (DVAE). Les DVAEs sont

une famille de modèles à variables latentes profonds, dérivés de l’auto-encodeur varia-

tionnel (VAE), et adaptés pour la modélisation de données séquentielles. Ils reposent sur

une séquence de vecteurs latents pour capturer les dépendances temporelles complexes

au sein des données séquentielles observées. En intégrant les DVAEs dans un DPGM

étendu, nous abordons une gamme de traitements audios et videos, qui sont le suivi multi-

objets (MOT), la séparation de sources audio mono-canal (SC-ASS) et le réhaussement

de la parole dans le bruit (SE). Les solutions sont dérivées en utilisant la méthodologie

générale de l’inférence variationnelle (VI). De plus, nous étudions également une nouvelle

architecture de DVAE, appelée HiT-DVAE, qui intègre l’architecture Transformer dans le

cadre probabiliste des DVAEs. HiT-DVAE et sa variante, LigHT-DVAE, démontrent tous

les deux d’excellentes performances dans la modélisation de la parole.

Les résultats de nos expériences confirment le potentiel des DPGMs pour adresser

des problèmes réels avec une quantité de données étiquetées limitée, offrant des solu-

tions évolutives et interprétables. De plus, l’introduction de HiT-DVAE représente une

contribution au domaine, combinant la force des architectures Transformer avec celle de

la modélisation probabiliste pour une meilleure modélisation des données séquentielles.

Ce travail ne contribue pas seulement à la compréhension théorique des DPGMs, mais

démontre également leur capacité d’application dans divers domaines, jetant les bases

pour de futures innovations en apprentissage automatique.

7

Declaration of Generative AI and AI-assisted Technologies in the
Writing Process

Statement: During the preparation of this thesis I used ChatGPT (GPT 3.5)
to refine the contents, aiming to improve readability and language. Besides,
I used ChatGPT (GPT 3.5) to generate the dialogues reported in Figure 8.1,
Figure 8.2, and Figure 8.3 in Section 8.3, Chapter 8. I also used DALL·E
to generate the image in Figure 8.4 in Section 8.3, Chapter 8. Following the
use of these services, I reviewed and edited the content as needed and take
full responsibility for the content.

8

ACKNOWLEDGMENT

Pursuing a PhD is not a easy journey, and it is the support and companionship along the

way that make it memorable. I would like to express my deepest gratitude to everyone

who has been part of this significant chapter in my life.

I am particularly grateful to my advisors, Xavier Alameda-Pineda and Laurent Girin.

I have learned a lot from them, not only in terms of scientific knowledge and research

methodologies but also in terms of their attitudes towards science and their invaluable

personalities. My scientific research journey has not been smooth sailing, just like ev-

eryone else. At the begining of my PhD, I spent one year on my first research work, the

MixDVAE model. We have spent a lot of time articulating the research findings during

this work into a long paper of around twenty pages. I was so proud of this paper that

I viewed it as a work of art that I poured my heart and soul into. Unfortunately, it was

rejected after a long review process for the reason that our method did not beat the state-

of-the-art supervised models. I was very frustrated with this result. Laurent encouraged

me that this does not mean that I have not done a good job. It was just because our tar-

geting journal is a top-level journal, leading to its competitive selection criteria. Laurent

told me “Garde le moral et la tête haute. (Keep your spirits up and your head held high.)”

Afterwards, we tried another top-level journal. After another long-term review process, it

got rejected again. This time, I began to deeply doubt the value of my work. I discussed

this with Xavier and asked him what the practical significance of the myriad mathematical

equations we had diligently derived was. Xavier did not answer my question directly. He

just said that several decades ago, when Kiyoshi Itô established his theory of stochastic

9

10

differential equations, he never thought about how his theory could inspire the progress

of diffusion models today. Finally and fortunately, our paper has been accepted by the

Transactions on Machine Learning Research (TMLR), accompanied by highly construc-

tive reviews that greatly contributed to enhancing the quality and depth of its content.

Today, I remain without a definitive answer to this question. However, I am certain that

the insights shared by Xavier and Laurent will leave a lasting impression on me. I will

continue to ponder this inquiry and endeavor to address it through my future research

endeavors.

Additionally, I extend my sincere gratitude to my close collaborators: Simon Leglaive,

for the countless enlightening scientific exchanges and his encouragement in guiding me

along the research journey; and Xiaoyu Bie, for his invaluable assistance with coding and

his kindness in addressing my inquiries.

Moreover, I wish to express my sincere gratitude to Gaël Richard and David Picard for

graciously accepting to review this thesis. And I am deeply thankful to Dorothea Kolossa,

Shai Ben-David and Olivier Michel for their willingness to serve as examiners on the jury

panel.

I find myself incredibly fortunate to be a member of the RobotLearn team. I have

had the pleasure of encountering plenty of interesting souls here. Gaétan Lepage, he

excels in coding and is always warmly receptive to assisting us in resolving bugs. The

“Remi” system he developed has proven invaluable in streamlining our cluster server

connections and saving time. Anand Ballou, he is very sociable, cares about others, and

always proposes organizing after-work activities. Louis Airale, during our time sharing

the same office, we talked a lot about the PhD life, social and cultural differences, as

well as other interesting topics. Chris Reinke, he gave me a lot of valuable suggestions

on my academic career. Space constraints prevent me from recounting all my experi-

ences with each member of the team. Nevertheless, I wish to extend my heartfelt grat-

itude to all of the former and current members of the RobotLearn team throughout my

PhD journey: Radu Horaud, Soraya Arias, Nicolas Turro, Matthieu Py, Alex Auternaud,

Kirubakaran Ramamoorthy, Victor Sanchez, Ghazi Shazan Ahmad, Daniel Jost, Andres

11

Bermeo Marinelli, Wen Guo, Alexandre Duplessis, Lorenzo Vaquero Otal, Basavasagar

Kallinath Patil, Yihong Xu, Luis Gomez Cámara, Timothée Wintz, Zhiqi Kang, Guil-

laume Delorme, David Emukpere, and Natanaël Dubois–Quilici. I would also like to

express my special thanks to Nathalie Gillot. She provided invaluable assistance with ad-

ministrative stuff and reimbursement procedures, allowing me to focus more on scientific

research.

I am also grateful to all the Chinese friends I met in Grenoble: Dexiong Chen, Xiaoyu

Bie, Wen Guo, Yuming Du, Zhiqi Kang, Yangtao Wang, Yang Xiao and Xi Shen. Their

companionship helped me navigate through the difficult time during the Covid lockdown,

and we have spent a lot of precious and memorable moments together.

Thanks to my French family, Odile Marquestaut, Yves Tresson, Jacques Marquestaut,

Paul Tresson, Marie-Lou Tresson and Emmanuel Tresson, for their consistent invitations

during the Christmas festivities and for treating me as a real member of the family. They

have offered me immense emotional support, bringing me a sense of joy and comfort from

having a family presence.

Thanks to my best friends, Yiyu Wang, Fanwen Sun, Li Fang, Yongxin Zhou, and

Linjing Tang. They provide me with unwavering emotional support. Even though some

of my friends are far away and we cannot easily meet each other in person, the countless

hours spent talking on weekends make me feel as though they were right there with me,

standing by my side.

Thanks to my family, Ruihong Feng, Hejun Lin, and Jingbo Lin for their boundless

and unwavering love. Words fail to express the depth of my emotions.

Finally, I would also like to thank myself for my courage, fortitude, curiosity and

vitality that have enabled me to navigate this challenging yet meaningful journey.

CONTENTS

1 Introduction 19

1.1 Probabilistic Generative Modeling: General Considerations 20

1.2 Applying (D)PGMs for Multimedia Processing 22

1.3 Overview of the Thesis . 23

1.4 List of Publications . 24

2 Methodological Background 25

2.1 Probabilistic Generative Models . 26

2.2 Latent Variable Models: An Overview 30

2.2.1 LVMs for Static Data . 32

2.2.2 LVMs for Sequential Data . 41

2.3 Learning and Inference of the Latent Variable Models 48

2.3.1 Posterior Intractablility and Approximate Inference 48

2.3.2 A General Introduction to Variational Inference 49

2.3.3 Exact Inference and EM Algorithms 51

2.3.4 Free-Form VI and Mean-Field Approximation 51

2.3.5 Fixed-Form VI and Gradient-Based Optimization 53

2.4 Deep Architectures for Sequential Data Modeling 55

2.4.1 Recurrent Neural Networks . 56

2.4.2 1D Convolutional Neural Networks 58

2.4.3 Attention Mechanism and Transformers 59

13

14 CONTENTS

2.5 Examples of Applications to Audio, Image, and Video Processing 63

2.5.1 Multi-Target Tracking . 64

2.5.2 Single-Channel Audio Source Separation 66

2.5.3 Speech Enhancement . 69

3 Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation 73

3.1 A DPGM for Multi-Source Data . 74

3.2 MixDVAE Model . 76

3.2.1 Problem Formulation and Notations 76

3.2.2 General Principle of the Proposed Model and Solution 77

3.2.3 Generative Model . 78

3.2.4 Inference Model . 80

3.3 MixDVAE Solution: A Variational Expectation-Maximization Algorithm 81

3.3.1 E-S Step . 82

3.3.2 E-Z Step . 84

3.3.3 E-W Step . 86

3.3.4 M Step . 86

3.3.5 MixDVAE Complete Algorithm 87

3.3.6 Choice of the DVAE Model . 89

4 Application of MixDVAE on MOT 91

4.1 Application of MixDVAE on MOT . 92

4.2 Setting MixDVAE in the MOT Configuration 93

4.3 DVAE Pre-training . 93

4.3.1 Dataset . 93

4.3.2 Training Details . 94

4.4 MixDVAE Evaluation Set-up . 94

4.4.1 Dataset . 94

4.4.2 Algorithm Initialization . 95

4.4.3 Observation Covariance Matrix 96

15

4.4.4 Hyperparameters . 96

4.4.5 Baselines . 96

4.4.6 Evaluation Metrics . 98

4.5 Experimental Results . 98

4.5.1 Quantitative Analysis . 98

4.5.2 Qualitative Analysis . 100

4.6 Ablation Studies . 102

4.6.1 Influence of the Pre-trained DVAE Model Quality 102

4.6.2 Influence of the DVAE Fine-tuning 103

4.6.3 Influence of the Observation Variance Ratio 105

5 Application of MixDVAE on SC-ASS 107

5.1 Application of MixDVAE on SC-ASS 108

5.2 Setting MixDVAE in the SC-ASS Configuration 109

5.3 DVAE Pre-training . 110

5.3.1 Dataset . 110

5.3.2 Pre-processing . 111

5.3.3 Training Details . 111

5.4 MixDVAE Evaluation Set-up . 112

5.4.1 Dataset . 112

5.4.2 Algorithm Initialization . 112

5.4.3 Observation Covariance Matrix 113

5.4.4 Hyperparameters . 113

5.4.5 Baselines . 113

5.4.6 Evaluation Metrics. 115

5.5 Experimental Results . 115

5.5.1 Quantitative Analysis . 115

5.5.2 Qualitative Analysis . 117

5.6 Ablation Studies . 118

5.6.1 Influence of the Pre-trained DVAE Model Quality 118

16 CONTENTS

5.6.2 Influence of the DVAE Fine-tuning 120

5.7 Discussion on the Computational Complexity 120

5.8 Conclusion . 122

6 Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Gen-

erative Models 125

6.1 Introduction . 126

6.2 Dynamical DPGM-based SE Method . 129

6.2.1 Clean Speech Modeling with an RVAE 129

6.2.2 Dynamical DPGM-Based Noise Model 131

6.2.3 Speech Enhancement with the Inference Model 132

6.2.4 Model Optimization . 133

6.3 Experimental Settings . 134

6.3.1 Datasets and Pre-processing . 134

6.3.2 Implementation Details and Training Settings 135

6.3.3 Baselines and Evaluation Metrics 136

6.4 Experimental Results . 136

6.4.1 Comparison of Different Variants under Different Configurations 136

6.4.2 Comparison with the Baselines 138

6.4.3 Discussion on the Computational Time 140

6.4.4 Qualitative Analysis . 141

6.4.5 Results on Unmatched Pre-train/Test Set 144

6.5 Conclusion and Further Discussions . 144

7 Speech Modeling with a Hierarchical Transformer Dynamical VAE 147

7.1 Introduction . 148

7.2 Probabilistic Model of HiT-DVAE . 150

7.2.1 Generative Model . 151

7.2.2 Inference Model . 152

7.2.3 Optimization . 152

17

7.3 Model Architecture of HiT-DVAE and LigHT-DVAE 153

7.3.1 HiT-DVAE Encoder . 154

7.3.2 HiT-DVAE Decoder . 154

7.3.3 Distinctions with the Original Transformers Architecture 155

7.3.4 LigHT-DVAE Adaptations . 156

7.4 Experimental Settings . 157

7.4.1 Datasets and Pre-processing . 157

7.4.2 Implementation Details and Training Settings 158

7.4.3 Baselines . 158

7.4.4 Evaluation Metrics . 158

7.5 Experimental Results . 159

7.5.1 Speech Spectrograms Analysis-Resynthesis Results 159

7.5.2 Ablation Studies on Model Structures 160

7.5.3 Interpretability of the Global Latent Variable 162

7.5.4 Speech Spectrograms Generation Results 163

7.6 Conclusion . 164

8 Conclusion and Further Discussions 165

8.1 Conclusion . 166

8.2 Insights and Limitations . 168

8.3 Towards a Broader Discussion . 172

A Appendix 179

A.1 Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation 179

A.1.1 MixDVAE Algorithm Calculation Details 179

A.1.2 SRNN Implementation Details 185

A.2 Application of MixDVAE on MOT . 186

A.2.1 Cascade Initialization in MOT 186

A.2.2 MOT Dataset Processing . 188

A.2.3 MOT Baselines Implementation Details 190

18 CONTENTS

A.2.4 More MOT Tracking Examples 191

A.3 Application of MixDVAE on SC-ASS 193

A.3.1 Formulas for SC-ASS . 193

A.3.2 More SC-ASS Examples . 194

A.4 Unsupervised Speech Enhancement with Deep Dynamical Probabilistic

Generative Models . 194

A.4.1 Posterior Distributions Derivation 194

Acronyms 197

List of Figures 205

List of Tables 209

List of Algorithms 211

CHAPTER 1

INTRODUCTION

It is not knowledge, but the act of learning,

not possession but the act of getting there,

which grants the greatest enjoyment.

— Carl Friedrich Gauss

19

20 Chapter 1: Introduction

1.1 PROBABILISTIC GENERATIVE MODELING: GENERAL CONSID-

ERATIONS

Machine learning methods can be broadly categorized into two main groups: discrimi-

native models and generative models. Given an observed variable x, the discriminative

models aim at learning a direct mapping from the observation to the prediction, which can

be formulated as y = f(x). The predicted variable y can either be discrete in the case of

classification or continuous in the case of regression. While the generative models usually

do not have a specific prediction target. They are often employed to discover the underly-

ing data generation mechanism by leveraging statistical analysis tools. The discriminative

models are objective-oriented while the generative models are reasoning-oriented. Both

of these two kinds of models can be interpreted from a probabilistic perspective. Let x de-

note the observed random variable. Let y denote the target random variable of a discrimi-

native model, which can also be a generation factor of a generative models. For example,

imagine that we have a set of pictures of dogs and cats. A discriminative model may be

designed to predict the category of a given picture, which could be ‘dog’ or ‘cat’. While

this category information can also be used to generate corresponding pictures. Finally, let

h denote other factors that we may also be interested in for the data generation. In the

previous example, h could be, for instance, the color of the animal. The probabilistic dis-

criminative model (PDM) aims at modeling the conditional distribution p(y|x), while the

probabilistic generative model (PGM) aims at modeling the joint distribution p(x,y,h).

Both of these distributions can be represented by leveraging various mathematical tools.

Particularly, the development of deep neural network (DNN) provides a powerful tool

for capturing complex dependencies among variables, therefore enabling more accurate

distribution modeling. Combining probabilistic models with DNN techniques results in

what is commonly known as deep probabilistic models, with a specific subtype termed

the deep probabilistic generative model (DPGM).

Just as the physicians understand and interpret the world with physical laws, the data

scientists understand and interpret the world with statistical models. Understanding and

21

modeling the whole data generation process in the real world is generally (much) more

complicated than making a prediction with the observed data. Therefore, PGMs neces-

sitate to impose stronger assumptions on the data compared to their discriminative coun-

terparts. Nonetheless, exploring PGMs remains an appealing and worthwhile endeavor

for various compelling reasons. First, mastering the data generation mechanism enables

us not only to generate new data points from the estimated distribution, but also to con-

trol the generation process by varying the generative factors. For instance, the PGMs

are widely used for text-to-image generation [143, 159, 178], text-to-speech generation

[167, 93, 202], audio generation [1, 92] and code completion [35, 144]. Furthermore,

they are also applied to tasks such as style transfer [240] and missing data imputation

[18]. Second, conceiving PGMs naturally guides us to understand the world through

causal reasoning. By conceptualizing the underlying data generation factors and model-

ing them with unobserved random variables, we force the model to learn interpretable, se-

mantically meaningful and statistically independent data representations [15]. This can be

interpreted as integrating inductive biases into the model with human-level intuitive prior

knowledge. And this kind of inductive bias is essential to construct more generalizable

models [76]. Finally, fitting a discriminative model generally lies under the supervised

learning paradigm. This requires a large amount of annotated data with well-defined la-

bels, which often requires costly and resource-intensive efforts. In contrast, PGMs can be

applied under the unsupervised or weakly-supervised settings to discover and extract the

inner structure and dependencies of the data. The features and representations learned by

PGMs can therefore benefit various downstream supervised prediction tasks by reducing

the amount of data required for training [15, 87].

In addition to the aforementioned motivations, a noteworthy avenue of research in-

volves the application of generative models to tackle intricate scientific or engineering

challenges. In numerous real-world scientific or industrial scenarios, problems often

exhibit significant complexity and involve various influential factors. These problems

typically cannot be simplified into straightforward mapping tasks that can be solved by

directly training a discriminative prediction model. Moreover, in both rigorous scien-

22 Chapter 1: Introduction

tific research and robust industrial production, relying solely on a single prediction often

proves inadequate. For instance, in some critical fields such as medicine and autonomous

driving, it is crucial to understand and assess the uncertainty of the prediction, so as to

build more robust and reliable data-driven models. Hence, it becomes imperative to quan-

tify uncertainties from a statistical standpoint. Indeed, model uncertainties arise from

two main sources. Firstly, during the data collection phase, measuring sensors are typ-

ically subject to noise disturbances, resulting in measurement errors to a certain degree.

Secondly, during the prediction phase, the model may exhibit errors if the assumption

of identically and independently distributed data samples is not met or if the data sam-

ple size is limited. Nevertheless, discriminative models struggle to effectively quantify

both types of uncertainties. In contrast, probabilistic generative models, combined with

Bayesian inference, offer a principled approach for for taking uncertainty into account ex-

plicitly. Another important consideration is that, while the development of DNNs, along

with stochastic gradient descent optimization, has significantly enhanced model expres-

siveness and facilitated learning from large datasets, deep learning models have sacrificed

interpretability. It remains challenging to establish a theoretical framework explaining

the remarkable performance of these models. Conversely, probabilistic generative models

are inherently interpretable. Their explicitly defined random variables and generative dis-

tributions ensure transparency. Lastly, the flexibility and robust generalization ability of

PGMs make them particularly well-suited for scenarios where vast amounts of annotated

data are lacking.

1.2 APPLYING (D)PGMS FOR MULTIMEDIA PROCESSING

In this thesis, we will explore the utilization of DPGMs, particularly focusing on dynam-

ical versions of these models, to tackle complex audio and visual tasks. Our research is

centered on a specific class of dynamical DPGM, known as dynamical variational auto-

encoder (DVAE) tailored for sequential data modeling. More precisely, we investigate a

learning paradigm which involves first pre-training a (several) DVAE model(s) on a (sev-

eral) single source dataset(s) to capture the dynamical information of the sequential data.

23

Subsequently, the pre-trained DVAE model(s) will be integrated into another PGM to ad-

dress complex multimedia processing problems, including multi-object tracking, single-

channel audio source separation, and speech enhancement. The complete solutions are

developed using principled Bayesian methods and variational inference methodology. We

conduct comprehensive studies and experimental examinations to illustrate the effective-

ness and limitations of this kind of method.

1.3 OVERVIEW OF THE THESIS

In Chapter 2, we provide a brief introduction to the general methodological background

of PGMs. Specifically, we begin with an overview of existing generative models. Then,

our attention turns to a specific category of generative models, the latent variable model

(LVM). We explore different kinds of LVMs, classify them into distinct categories based

on various aspects, and also discuss the associated learning and inference methods. Ad-

ditionally, we present the deep architectures for sequential data modeling and outline the

research context for the three tasks addressed in this thesis: multi-object tracking (MOT),

single-channel audio source separation (SC-ASS), and speech enhancement (SE) with

noise.

In Chapter 3, we tackle a complex and challenging task encountered in multiple techni-

cal domains such as computer vision or aeronautics: multi-source trajectory tracking and

separation. We propose a DPGM framework and derive the solutions utilizing variational

inference (VI). We apply the proposed method to two distinct application scenarios: MOT

(Chapter 4) and SC-ASS (Chapter 5).

In Chapter 6, we explore unsupervised speech enhancement with deep dynamical gen-

erative models. We employ two distinct DNNs to individually model the distributions of

clean speech and noise. Throughout this chapter, we will illustrate how various training

configurations enable us to strike a balance between performance and inference efficiency.

In Chapter 7, we introduce a novel DPGM architecture called HiT-DVAE and investi-

gate its applications to speech signal modeling. This architecture integrates a Transformer

structure into a DVAE framework, leveraging the strengths of both. We assess the capa-

24 Chapter 1: Introduction

bilities of this model through comprehensive experimentation.

In Chapter 8, we provide a comprehensive summary of the research conducted in this

thesis, highlighting the insights gained and addressing the limitations of the proposed

methods. Additionally, we engage in a broader discussion regarding potential future re-

search directions.

1.4 LIST OF PUBLICATIONS

The content of this manuscript is based on the following publications:

• Xiaoyu Lin, Laurent Girin, and Xavier Alameda-Pineda. “Mixture of dynamical

variational autoencoders for multi-source trajectory modeling and separation.” In

Transactions on Machine Learning Research, 2023.

• Xiaoyu Lin, Simon Leglaive, Laurent Girin, and Xavier Alameda-Pineda. “Unsuper-

vised speech enhancement with deep dynamical generative speech and noise mod-

els.” In Proceedings Interspeech Conference, pages 5102-5106, 2023.

• Xiaoyu Lin, Xiaoyu Bie, Simon Leglaive, Laurent Girin, and Xavier Alameda-

Pineda. “Speech modeling with a hierarchical Transformer dynamical VAE.” In

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

1-5, 2023.

CHAPTER 2

METHODOLOGICAL BACKGROUND

To know what you know and what you do

not know, that is true knowledge.

知之为知之，不知为不知，是知也。

— Confucius

25

26 Chapter 2: Methodological Background

2.1 PROBABILISTIC GENERATIVE MODELS

The current existing generative models can be broadly grouped into two categories, ac-

cording to if they model implicitly or explicitly the data distribution (i.e. the probability

density function (PDF) of the data) [47, 141]. For models in the first category, the data

distribution is implicitly modeled via the data sampling process, with no need for ex-

plicit formulation of the PDF. A typical example of models of this type is the generative

adversarial network (GAN) [74]. A GAN comprises two fundamental components: a

generator and a discriminator. The generator takes a random vector z ∈ Rl sampled from

the standard Gaussian distribution as input, and transforms it into a synthetic data sample

x = fθ(z) ∈ Rd with a function fθ : Rl → Rd parameterized by a DNN. On the other hand,

the discriminator takes either the generated data sample x or a real data sample from the

training dataset y as input, and determine whether the input data is “real” or “fake”. The

parameters of the generator and the discriminator are jointly optimized via adversarial

training.

Table 2.1: The PDF forms of different generative models. In all of the models, x rep-
resents the data and θ represents the parameters of the model. Other symbols used in a
specific model will be explained in the corresponding paragraph.

Model PDF form

Auto-regressive models pθ(x) =
∏d

i=1 pθ(xi|x<i)
Normalizing flows pθ(x) = pz(f

−1
θ (x))| det(Jf−1

θ
(x))|

Energy-based models pθ(x) =
exp(−Eθ(x))

Zθ

Diffusion model pθ(x0) =
∫
p(xT)

∏T
t=1 pθ(xt−1|xt)dx1:T

Score-based models pθ(x) = exp(log p(x0) +
∫ 1

0
sθ(x0 + t(x− x0))

T (x− x0)dt
Latent variable models pθ(x) =

∫
p(z)pθ(x|z)dz

In contrast to the implicit generative models, models of the second category rely on

an explicit formulation pθ(x) parameterized by a set of parameters θ to approximate the

true data PDF p(x). With an explicit expression of the PDF, this kind of models are

typically trained by maximizing the data likelihood function, or a surrogate of it [24, 141].

However, it is important to note that maximum likelihood estimation (MLE) is not the sole

27

approach for learning these models; alternative methods are explored in, for instance, the

score based models [94, 185]. We provide some examples of parametrized PDF forms

corresponding to different generative models in Table 2.1.

One of the most intuitive and commonly used explicit generative models are the auto-

regressive models [200, 204, 145, 146]. The auto-regressive models factorize the PDF of

data x ∈ Rd with dimension d based on the causal auto-regressive dependencies between

variables at different dimensions, as indicated in Table 2.1. Simple as it is in terms of

probabilistic modeling, there exists a plethora of choices to model the auto-regressive de-

pendencies so as to enhance the models’ expressiveness, including the causal multilayer

perceptron (MLP) [200, 66], the recurrent neural network (RNN) [204], the convolutional

neural network (CNN) [145, 203], and the current state-of-the-art model, the generative

Transformers [146]. The auto-regressive models have achieved very impressive data gen-

eration performance in various domains such as image, audio and text. Nevertheless, we

need to point out that the auto-regressive models are generally employed in a deterministic

way, without taking into account the uncertainty in the generation process.

Instead of directly modeling the complex distribution of the high-dimensional data,

the normalizing flows [168, 106, 150] convert a simple known distribution into the com-

plex unknown distribution of the data using (a set of cascaded) invertible function(s). Let

z ∈ Rd denote a random variable which follows a tractable and easy-to-sample distri-

bution pz(z). Let fθ : Rd → Rd denote a continuously differentiable invertible function

parametrized with DNNs. The normalizing flows transform the random variable z to the

data sample x with x = fθ(z). As indicated in Table 2.1, the PDF of x is obtained using

the change of variable formula, with Jf−1
θ

denoting the Jacobian matrix of the function

f−1
θ . Normalizing flows enable the generation of data with complex patterns from vectors

randomly sampled from a relatively simple distribution. However, the requirement for an

invertible transform function places strong constraints on the choice of neural network

architectures for flow-based models.

Inspired by the Boltzmann distribution in statistical physics, the energy-based models

[196, 114] define the PDF of the data with the help of an energy function Eθ(·), which is

28 Chapter 2: Methodological Background

parameterized by DNNs, and a partition function Zθ :=
∫
exp(−Eθ(x))dx, which serves

as the normalizing constant of the PDF. The model optimization involves maximizing the

data log-likelihood. However, since the partition function Zθ is usually intractable, the

gradient of logZθ with respect to θ needs to be approximated using techniques such as

the contrastive divergence algorithm [86] and the Markov Chain Monte Carlo (MCMC)

sampling. Alternatively, one can resort to the score matching methods [94, 210] or the

noise contrastive estimation (NCE) [81] to circumvent the density normalization issue and

learn model parameters.

Inspired by the diffusion process in non-equilibrium statistical physics, the principle

of diffusion models [183, 88] is to corrupt the original structured data sample x0 by grad-

ually adding small amounts of Gaussian noise into the data within a Markov chain, and

by doing so, transform the unknown complex data distribution into a standard Gaussian

distribution (denoted as p(xT) in Table 2.1). The data generation process is obtained by

reversing the diffusion process. Training the generative process of a diffusion model con-

sists of finding the reverse Markov transition kernel pθ(xt−1|xt) which maximizes a lower

bound of the data log-likelihood. The transition kernel is often parametrized by DNNs.

The score-based models [185, 186, 188] propose to estimate the gradient of the data

distribution log-density instead of directly estimating the PDF in order to circumvent the

challenging issue of density normalization. Given a PDF p(x), the associated Stein score

function is defined as s(x) := ∇x log p(x) [123]. The score function is usually modeled

and parametrized with DNNs, resulting in a modeled score function sθ(x). The model is

trained to minimize the Fisher divergence between the parameterized distribution pθ(x)

and the true data distribution p(x), which is defined as F (p, pθ) =
1
2
Ep[||s(x)− sθ(x)||22].

As the true data score function s(x) is inaccessible, directly computing the Fisher diver-

gence is infeasible. The current methods resort to various score matching techniques to

address this issue [94, 210, 187]. Once the estimated score function sθ(x) is obtained, the

data points can be sampled using Langevin MCMC sampling technique [152, 78], with no

need to explicitly estimate the normalization constant of the PDF. Conversely, to derive

the PDF from a given a score function, one can apply the formula provided in Table 2.1

29

and determine the term log p(x0) using the normalization constraint
∫
p(x)dx = 1. In

particular, the denoising score matching method [188] can be connected with the diffu-

sion models [88] under a more general umbrella of stochastic differential equation (SDE)

[194, 242].

Finally, we present the latent variable model (LVM), which forms the central topic

that will be explored in this manuscript. LVMs introduce latent variables z with relatively

simple and usually known prior distributions to represent the complicated distribution

over the observed variable x. We should note that, although both normalizing flows and

the LVMs make use of auxiliary variables with simpler prior distributions to model com-

plex real-world data distributions, there is a distinct difference between these two meth-

ods. Normalizing flows depict the relationship between the observed variable x and the

latent variable z with a deterministic function fθ, whereas LVMs formulate the problem

in a more principled probabilistic perspective by leveraging the conditional distributions

and Bayes’ rule.1 When the conditional dependencies between the random variables are

presented graphically, we delve into the world of graphical models [100, 213]. Graphical

models play a crucial role in uncovering the hidden factors that govern the data generation

process and in capturing the causal relationships among these factors [155]. However, it

is not mandatory for the latent variables to have any explicit physical interpretation, they

can be introduced simply in purpose to construct more complex joint distributions or to

describe the supposed inner structure of the data [24]. Computing the marginal likelihood

of the observed data p(x) from the joint distribution p(x, z) requires integration over the

latent space, which might be computationally and/or analytically intractable. Therefore,

instead of directly maximizing the data (log-)likelihood, a surrogate objective called the

Evidence Lower BOund (ELBO) (which will be formally introduced in Section 2.3.2)

is optimized. Another essential task in the application of LVMs is the identification of

the posterior distribution p(z|x), which is necessary for the inference of the latent vari-

ables z given the observed variable x. Applying Bayes’ rule, we can express this as

p(z|x) = p(z)p(x|z)∫
p(z)p(x|z)dz . As previously discussed, the denominator term which involves the

1These two methods can also be combined together to construct more powerful gen-
erative models.

30 Chapter 2: Methodological Background

integration over the latent space is usually intractable. Therefore, the estimation of the

posterior distribution often necessitates the use of various approximation methods. In the

following sections, we will make a closer examination of different types of LVMs and

present the associated methodologies for learning the model parameters and inferring the

latent variables. More precisely, in Section 2.2, we primarily concentrate on the intro-

duction of different LVMs. In Section 2.3, we delve into the details of their solutions,

explaining how to learn the model parameters and infer the posterior distribution of the

latent variables.

2.2 LATENT VARIABLE MODELS: AN OVERVIEW

As discussed in the previous subsection, LVMs serve two primary purposes. First, LVMs

have the capacity to depict complex high-dimensional real-world data distributions by

leveraging (a set of) auxiliary latent variable(s). This is achieved by specifying both the

prior knowledge on the latent variable(s) and the structural conditional relationships be-

tween observed and latent variables. Second, LVMs provide a potential means to gain

insights into a given dataset and to understand the underlying data generation mechanism

through probabilistic modeling. This is accomplished by inferring the posterior distri-

bution of the latent variable(s) given the observed variable via Bayesian methods. The

generative and interpretative aspects of LVMs are two sides of the same coin. As both the

parameters of the generative model and the posterior distribution are unknown, these two

problems are often solved together. We will provide further explanations on this point in

the next section.

Based on the characteristics of both the observed and latent variables, LVMs can be

classified into various categories from different perspectives. To begin with, according

to the discrete or continuous nature of the observed and latent variables, LVMs can be

divided into four distinct groups. In this PhD work, we constraint our scope to the case

where the observed variables are continuous. Within this context, we consider the two

cases where the latent variables can be either discrete or continuous. Discrete latent vari-

ables are generally used to represent categorical factors, inducing a clustering over the

31

data samples. For instance, consider a set of images {x1, ...,xN} of different animals:

cats, dogs, racoons, and elephants. The animal type inside the image can be defined as

a discrete latent variable z, which follows a categorical distribution with four possible

values. An LVM can be defined to model this image dataset by specifying the prior dis-

tribution of the latent variable p(z) and the conditional distribution p(x|z). However, in

many real-world scenarios, the categorical factors are unknown and may not be easily

intuitively pre-defined. To unveil these factors, clustering techniques [133] are frequently

utilized. On the other hand, continuous latent variables are generally employed to repre-

sent continuous underlying generative factors, which is often associated to the process of

dimensionality reduction. The underlying hypothesis here is that, the high-dimensional

data points are supposed to live on (or close to) a manifold of much lower dimensionality

than that of the original data space [24]. For instance2, given a single 100 × 100 pixel

image x0, by simply translating and rotating it, we can generate a dataset {x1, ...xn}. Al-

though the original image samples in this dataset lie in a 10,000-dimensional data space,

the variations of these data points only comprise three degrees of freedom, corresponding

to the vertical and horizontal translations and the rotations respectively. Therefore, we can

resort to LVMs to learn a low-dimension representation z of the high-dimensional image

data.

Another perspective to classify the LVMs is to consider the properties of the observed

variable. In statistical machine learning, most models operate under the common assump-

tion that the observed data samples are independently and identically distributed (i.i.d.).

A single global latent variable can be defined to describe the variations within the data

sample. While this assumption demonstrate its effectiveness on a great number of “static”

data types, such as images, it shows limited capacities when dealing with more structured

data types, such as sequential data. Sequential data, such as time series, audio signals,

and DNA sequences, are very common in our daily lives. They are supposed to evolve

over time by following certain underlying mechanisms or patterns. However, the tempo-

ral evolution patterns within each data sample may not be adequately captured under the

2This example originates from [24], in the introduction of Chapter 12.

32 Chapter 2: Methodological Background

i.i.d. assumption with a single global latent variable. Therefore, introducing a sequence of

latent variables can be an effective approach to depict the complex temporal dependencies

within the sequential data. This has lead to the development of state space model (SSM)

[193] and more sophisticated “dynamical” LVMs for sequential data.

Finally, with the remarkable recent advances in deep learning, it is possible to com-

bine the expressive modeling power of DNNs and the interpretability of LVMs to con-

struct richer and more flexible generative models. These models are commonly referred

to as deep latent variable model (DLVM). Just like LVMs, DLVMs can be either static

or dynamical according to the nature of the observed/latent variables and the presence

of temporal dependencies within the model. Moreover, the DLVMs used for dynamical

modeling can vary not only according to the nature of the temporal dependencies across

successive observed and/or latent variables, but also according to the way these depen-

dencies are implemented with DNNs. We will come back to this principle in more details

in Section 2.2.2.

In the following, we present a selection of representative LVMs based on the classifi-

cation discussed above. We will begin with LVMs for static data, followed by LVMs for

sequential data. The goal is to provide a comprehensive overview of the development of

LVMs, although this compilation is certainly not exhaustive. Besides, we should note that

in the literature, the name of a model is often confused with the name of the solution (e.g.

the methods employed to learn the model parameters and to infer the posterior distribution

of the latent variables). More specifically, the name of a model solution as a data analysis

method often implies the definition of the underlying model, which has its own name.

For instance, the factor analysis (FA) method that will be introduced in Section 2.2.1 is

indeed a solution for the linear Gaussian model (LGM). We declare that even if the model

solutions are presented in Section 2.3, in this section we may employ both names when

introducing the model, as is usual in the literature.

2.2.1 LVMS FOR STATIC DATA

1. Discrete latent variable

33

a) Mixture models. We start with LVMs for static data with discrete latent variables.

A typical case is the mixture models [136, 137]. Mixture models find wide applications

in numerous signal processing and pattern recognition tasks, where the goal is to model

the distribution of a signal that can take several distinct discrete states. Each state is

expected to be encoded by a distinct value of the latent variable. The marginal distribution

of the observed data is modeled as a linear combination of a finite set of component

distributions. Each component distribution, linked to a specific state, is defined by the

conditional distribution given the value of the latent variable. The mixing coefficients,

which indicate the relative weight of each component, correspond to the prior distribution

of the discrete latent variable.

This can be formulated as follows. Unless otherwise specified, in the following, we

will use x to denote the observed variable and z to denote the latent variable. In the

context of mixture models, we suppose that x can take on K possible states and z is a

discrete scalar variable, hence renoted z, taking values in {1, ..., K}. z is assumed to

follow a categorical prior distribution with p(z = k) = πk. The marginal distribution of

x can therefore be defined as

p(x; θ) =
K∑
k=1

p(z = k)p(x|z = k) =
K∑
k=1

πkp(x; θk). (2.1)

Here we use θ and θk to represent the parameters of the marginal distribution of x and that

of each component conditional distribution, respectively. The component distributions

p(x; θk) can take various forms. In particular, when it is Gaussian, we obtain the famous

Gaussian mixture model (GMM):

p(x) =
K∑
k=1

πkN (x|µk,Σk). (2.2)

GMM is a very popular probabilistic model in machine learning and have been broadly

employed for signal processing and pattern discovery in various domains, especially be-

fore the advent of deep learning [24].

Besides, GMM has a strong connection with the K-means clustering algorithm [133].

34 Chapter 2: Methodological Background

In fact, clustering a set of data points {x1, ...,xN} amounts to associate each data point

xn with a discrete latent variable zn ∈ {1, ..., K} that specifies the category xn belongs

to. Given the observed data point xn, we can compute the posterior distribution over the

latent variable zn using Bayes’ rule:

γ(znk) := p(zn = k|xn) =
p(z = k)p(xn|z = k)∑K
j=1 p(z = j)p(xn|z = j)

=
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

.

(2.3)

The quantity γ(znk) is referred to as the responsibility that component k takes for ex-

plaining xn [24]. Computing all responsibilities for a data point xn can be viewed as soft

assignment of this data point to the clusters. Otherwise, we can also compute the hard

assignment for xn by taking the category with the maximum responsibility value :

ẑn = argmax
k

γ(znk). (2.4)

If we consider a uniform prior distribution over zn (∀k ∈ {1, ..., K}, p(zn = k) = 1
K

) and

spherical Gaussian distributions with Σk = I, the hard assignment reduces to

ẑn = argmin
k
||xn − µk||22. (2.5)

This is the common case in the K-means clustering algorithm where the assignment is

done by searching the minimum euclidean distance.

b) Vector-quantised variational autoencoder. Although the mixture models along with

the clustering algorithms provide effective tools to discover discrete and compositional

data patterns, applying them directly to the raw high-dimensional data can often result to

suboptimal performance. With the advancement of deep learning methods, well-designed

DNNs can be employed to extract features from the raw data. Subsequently, clustering

algorithms can be applied on these learned features, facilitating the discovery of more

abstract and potentially semantically meaningful discrete latent representations. Here we

present a representative generative model in this type, known as the Vector-quantised

variational autoencoder (VQ-VAE) [205]. VQ-VAE originates from the variational

35

auto-encoder (VAE), a LVM designed for continuous variables which will be presented

in Section 2.2.1. In the original paper [205], VQ-VAE is formulated as a model that

leverages vector quantization (VQ) techniques [77] to discretize the latent representations

learned by VAEs. In this section, we aim to provide an alternative interpretation of VQ-

VAE and establish the connections to GMMs.

VQ-VAE comprises three essential components: an encoder, responsible for encoding

the raw input data by reducing its dimension and creating a continuous latent space; a

quantizer, designed to discretize the continuous latent space learned with the encoder by

learning a codebook of discrete vectors; and a decoder, tasked with reconstructing the

input data from the discrete latent embeddings. Both encoder and decoder are based on

DNNs. To illustrate the basic conception of VQ-VAE, let us first consider a VQ-VAE

designed for vector data, with the encoder encoding the input into a single latent vector.

Given an observed data point xn ∈ Rd, the encoder will learn a continuous function fϕ(·) :

Rd → Rl to encode xn into a lower dimensional latent space. The continuous encodings

of the encoder fϕ(xn) will then be assigned to the nearest discrete latent vector in the

codebook by computing the euclidean distance between fϕ(xn) and all vectors in the

codebook {e1, ..., eK}. This process resembles K-means clustering with hard assignment

in the continuous space learned by the encoder. Finally, the assigned latent vector ek will

be fed into the decoder to reconstruct the original signal: x̂n = gθ(ek).

This process can be interpreted alternatively from a probabilistic perspective with dis-

crete latent variables. We first clarify several notations. Let x ∈ Rd denote the continuous

observed data. Let z ∈ RK , which is a K-dimensional one-hot vector with a particular

element zk set to 1 and other elements set to 0, denote the latent assignment variable.

Given a data point xn and the corresponding assignment variable zn, znk = 1 means that

the continuous encoding fϕ(xn) is assigned to the discrete latent vector ek. Finally, let

A ∈ RK×l denote all of the codebook vectors. The assigned discrete latent vector can

therefore be represented as ek = zTA. Applying the GMM, the marginal distribution of

36 Chapter 2: Methodological Background

x can be written as:

p(x; θ) =
∑
z

pθ(z)pθ(x|z) =
K∑
k=1

πkN (x|µk,Σk). (2.6)

As we discussed before, in the case of hard-assignment K-means clustering algorithm,

the prior of z is supposed to be uniform while the conditional distributions are supposed

to be spherical Gaussians with identity covariance matrix. And the mean vectors can be

expressed with the decoder neural networks, giving rise to:

p(x; θ) =
1

K

K∑
k=1

N (x|gθ(ek), I). (2.7)

In that case, the elements of the assignment variable z can be determined analytically by

applying 2.5.

However, in practice, situations are a bit more complicated. As the VQ-VAE is gen-

erally applied to image or audio data, the inputs are often encoded into a series of latent

variables instead of a single latent variable, achieved through the use of convolutional

layers. For instance, consider an image input represented by x ∈ RW×H×C , where W ,

H , C denote the width, height, and channels (dimension) of the image, respectively. The

encoder function fϕ encodes x into a latent space, yielding fϕ(x) ∈ RW ′×H′×l, where W ′,

H ′, l represent the width, height, and channels (dimension) of the resulting latent feature

map. Instead of directly applying the quantizer to the entire feature map fϕ(x), VQ-VAE

applies the quantizer to vectors at individual positions of the feature map fϕ(x)i,j . The

joint distribution of x is therefore:

p(x; θ) =
∑

z1,1,...,zW ′H′

pθ(z1,1, ..., zW ′H′)pθ(x|z1,1, ..., zW ′H′). (2.8)

Let ei,j = zTi,jA denote the assigned discrete latent vector at position (i, j), the conditional

distribution can be written as:

p(x|z1,1, ..., zW ′H′) = N (x|gθ([e1,1, ..., eW ′H′]), I). (2.9)

37

The posterior distribution of the assignment variables z1,1, ..., zW ′H′ can no longer be

determined analytically. In VQ-VAE, the elements of each assignment variable zi,j are

approximated by:

∀k ∈ {1, ..K}, ẑi,j,k =

1 if k = argmink ||fϕ(x)i,j − ek||22;

0 otherwise.
(2.10)

During the training phase for both the encoder and the decoder, the prior distribution

pθ(z1,1, ..., zW ′H′) is treated as factorized uniform distribution, allowing it to be disre-

garded initially. However, in subsequent stages detailed in VQ-VAE [205, 163], an auto-

regressive prior neural network is suggested to be fitted. This step aids the data generation

process.

VQ-VAE demonstrated its powerful data analysis-resynthesis and generation capabil-

ities on various data formats, including images, audio signals and videos. And it can also

be used to learn interpretable representations by imposing further regularizations on the

discrete latent space [54].

2. Continuous latent variable

a) Factor analysis & probabilistic PCA. When considering a continuous latent space,

one straightforward scenario is the linear Gaussian model (LGM). Specifically, we delve

into a class of continuous latent space LVMs, where the prior distribution p(z) is Gaus-

sian, along with a Gaussian conditional distribution p(x|z). The dependency between the

observed variable x and the latent variable z is supposed to be linear. The solutions to

LGMs are usually referred to as factor analysis (FA).

Let x ∈ Rd denote the observed variable and let z ∈ Rl denote the continuous latent

variable with latent dimension l. Usually, we have l < d. In LGM, the prior distribution

of the latent variable z and the conditional distribution p(x|z) are defined as following:

p(z) = N (z|0, I), (2.11)

p(x|z) = N (x|Wz+ µ,Ψ), (2.12)

38 Chapter 2: Methodological Background

where W ∈ Rl×d is a linear projection matrix, µ ∈ Rd is a translation vector, and

Ψ ∈ Rd×d is a diagonal covariance matrix. We note that in LGM models, the generative

process of the observed variable x can be viewed as an additive Gaussian noise model. In

particular, let ϵ ∈ Rd be a zero-mean Gaussian-distributed noise variable with covariance

matrix Ψ. And suppose that ϵ is independent with Wz+µ. Then, we can obtain x with:

x = Wz+ µ+ ϵ. (2.13)

As both the pior and conditional distributions are Gaussian, the marginal distribution

of x is also Gaussian, and can be computed as:

p(x; θ) =

∫
p(x|z)p(z)dz = N (x|µ,C), (2.14)

with

C = WWT +Ψ, (2.15)

and θ refers to the parameters set {W,µ,Ψ}. We should note that given a marginal

distribution p(x), this parametrization is not unique. In fact, it is rotation-invariant in

the latent space. To illustrate this, let us consider a matrix W̃ = WR, where R is an

arbitrary orthogonal rotation matrix, satisfying RRT = I. The term W̃W̃T that appears

in the covariance matrix C satisfies W̃W̃T = WRRTWT = WWT . Multiplying W by

an orthogonal matrix can be interpreted as rotating the latent variable z before generating

x. As z follows an isotropic Gaussian prior, the marginal distribution of x is invariant to

this rotation. Therefore, the LGM models are unidentifiable.3

The posterior distribution p(z|x) is also Gaussian, and can be derived in closed-form

as:

p(z|x) = N (z|µz|x,Σz|x), (2.16)

with

Σz|x = (I+WTΨ−1W)−1. (2.17)

3In statistics, a parametric model P = {Pθ : θ ∈ Θ} with parameter space Θ is said to
be identifiable if the mapping θ 7→ Pθ is one-to-one: ∀θ1, θ2 ∈ Θ, Pθ1 = Pθ2 ⇒ θ1 = θ2.

39

µz|x = Σz|xW
TΨ−1(x− µ), (2.18)

The probabilistic principal components analysis (PPCA) [198] is a special case of

FA where the additive noise in Equation 2.13 is supposed to be isotropic, which means

that the covariance matrix Ψ becomes σ2I. PPCA is the probabilistic version of the

principal components analysis (PCA). PCA is a technique that is widely applied across

various data processing domains, including dimensionality reduction, data compression,

feature extraction and data visualization [99]. It was originally defined as an orthogonal

linear projection of the data into a reduced-dimensional space, referred to as the principal

subspace, with the aim of maximizing the variance of the projected data [90]. While as

we have discussed, PCA can also be formulated in a probabilistic perspective within the

LVM framework. In fact, the PPCA can be interpreted as the solution to the LGM when

the number of free parameters is significantly reduced while still allowing the model to

capture the dominant correlations in the data set [24].

b) Independent component analysis. We may also consider models with linear depen-

dency between the observed and latent variables but non-Gaussian latent distributions.

An important class of solutions for such models are the independent component anal-

ysis (ICA) [39, 32, 95, 12]. ICA is typically used to solve the blind source separation

problem. Consider a situation where two people speak at the same time and we record

their voices with two distinct microphones. The signals recorded by each of the micro-

phone at each time step t can be gathered in the observed vector xt, and represented as

a linear combination of the (unknown) amplitudes of the ‘source’ signals emitted by the

two speakers at the same time step t, and gathered in the latent vector zt:

xt = Azt, (2.19)

with A ∈ R2×2 an invertible mixing matrix. ICA applies to the case where the number

of source signals is equal to or greater than the number of recorded signals, as is verified

in our example. Under these assumptions, if we can uniquely estimate the entries of A

from the observed data samples, then we can invert the mixing process and obtain the

unobserved source signals.

40 Chapter 2: Methodological Background

We note that Equation 2.19 can be obtained from Equation 2.13 by setting both µ and

ϵ to the zero vector. If we choose to use Gaussian prior and conditional distributions,

we fall into the LGMs and their corresponding solutions FA. However, as we discussed

previously, the FA solutions are unidentifiable with the isotropic Gaussian prior due to

the rotation invariant property. This implies that we are unable to uniquely determine the

values of A. Therefore, ICA requires that the latent variable z follows an independent,

non-Gaussian prior distribution. In ICA models, we generally consider a distribution that

factorizes over the latent variables, such that

p(z) =
d∏

j=1

p(zj), (2.20)

and each of the factorized latent variable distribution is chosen as a heavy-tailed distribu-

tion, for example a Laplace distribution. This can be shown to enable the identifiability

of the model [39].

c) Variational autoencoder. The LVMs with continuous latent variables that we have

discussed so far focus on applying linear dependencies between the observed and latent

variables, which allows for easy derivation of model solutions. For instance, we can easily

compute tractable marginal and posterior distributions for the LGMs. Nonetheless, linear

models might be too simple and may not be able to efficiently capture the complexity of

real-world data distributions. The advent of deep learning offers the potential to extend

these models into non-linear structures with the help of DNNs. The variational auto-

encoder (VAE) [107, 169] presents a good example of this type of models.

In the VAE, the latent vector z ∈ Rl is generally assumed to follow a standard Gaussian

prior distribution:

p(z) = N (z|0, I). (2.21)

The conditional distribution can be chosen according to the nature of the observed vari-

able x ∈ Rd. It can be, for instance, a multivariate Gaussian distribution with diagonal

covariance matrix:

pθ(x|z) = N
(
x|µθ(z), diag(σ2

θ(z))
)
. (2.22)

41

The parameters of this distribution, here the mean vector µθ(·) and the standard deviation

vector σθ(·), are non-linear functions of z modeled by a DNN called the decoder network

and parameterized with parameters θ.

The posterior distribution pθ(z|x) corresponding to the above model does not have an

analytical expression. Following the variational inference principles [213], an approxi-

mate posterior distribution qϕ(z|x) is introduced. A common choice for qϕ is to use a

multivariate Gaussian distribution with diagonal covariance matrix:

qϕ(z|x) = N
(
z|µϕ(x), diag(σ2

ϕ(x))
)
, (2.23)

where the mean and standard deviation vectors µϕ(·) and σϕ(·) are non-linear functions

of x implemented by another DNN called the encoder network and parameterized by ϕ.

As the VAE allows to extract non-linear embeddings from the observed data, it can be

employed to learn more complex data representations. Actually, different variants of VAE

have been explored to enhance its ability in acquiring richer and more expressive latent

representations, see, e.g., [85, 236, 105].

2.2.2 LVMS FOR SEQUENTIAL DATA

As mentioned before, sequential data involve recordings of observed signals over time. As

we mentioned before, directly treating the entire sequences as i.i.d. samples and learning

a single global latent variable for each sequence can lead to suboptimal model perfor-

mance, especially for tasks involving temporal predictions. In this subsection, we present

a branch of LVMs that leverage a sequence of latent variables {z1, ..., zT} to model the

temporal dependencies within a given observed sequence {x1, ...,xT}, resulting in dy-

namical LVMs. We start by considering dynamical LVMs with discrete latent variables,

and further extend our exploration to dynamical LVMs with continuous latent variables.

1. Discrete latent variable

a) Hidden Markov models. One of the simplest way to model the dynamical prop-

erties of an observed sequence {x1, ...,xT} via a sequence of discrete latent variables

{z1, ..., zT} is to employ a hidden Markov model (HMM) [157]. Let us consider here a

42 Chapter 2: Methodological Background

scalar latent variable zt ∈ {1, ..., K} (the approach can be generalized to a vector latent

variable). The latent variables z1:T are supposed to follow a first-order Markov transition

model. The observations can either be discrete with xt ∈ {1, ..., Nx}, or continuous with

xt ∈ Rd. At each time step t, the model effectively corresponds to a mixture model with

component distributions given by p(xt|zt). The difference with the mixture models men-

tioned in Section 2.2.1 lies in the fact that the latent variables zt are no longer independent

over time; instead, they exhibit temporal correlations modeled with specific conditional

distributions conditioned on zt−1.

Let us consider the equations formalizing the above principles. In the HMM, the joint

distribution of both observed and latent variable sequences can be expressed as follows:

p(x1:T , z1:T) = p(z1)
T∏
t=2

p(zt|zt−1)
T∏
t=1

p(xt|zt). (2.24)

The initial latent variable is assumed to follow a K-categorical distribution, with p(z1 =

k) = πk. The transition model between successive latent variables is usually defined by a

conditional probability table:

p(zt = i|zt−1 = k) = Aik, (2.25)

where Aik is the entry of the transition matrix A, satisfying 0 ≤ Aik ≤ 1 and
∑K

k=1Aik =

1. The conditional distribution p(xt|zt), often referred to as the observation model in the

signal processing / control theory literature, can take various forms depending on the

nature of the observed data. In the case of continuous data, a common choice is to use the

Gaussian distribution:

p(xt|zt = k) = N (xt|µk,Σk). (2.26)

Besides, we can also consider more flexible observation models. For example, we can use

a M-component GMM:

p(xt|zt = k) =
M∑

m=1

wkmN (xt|µkm,Σkm). (2.27)

43

This model is usually mentioned as the HMM-GMM model [157, 156].

The posterior distributions of the latent variables p(zt|x1:T) can be analytically com-

puted with the forward-backward algorithm [156] or the Baum-Welch algorithm [11].

2. Continuous latent variable

a) Linear dynamical systems. If we consider that the observed sequential data are gov-

erned by continuously varying hidden states (or generative factors) rather than discrete

ones, we can define sequential LVMs with continuous latent variables. The simplest and

most commonly-used models of this type is the linear(-Gaussian) dynamical system

(LDS) [68]. Similar to HMM, the LDS also imposes a first-order Markov chain on the

latent variables. However, the transition distributions are no longer depicted by a discrete

transition table; instead, they are defined by an LGM (see Section 2.2.1 for the intro-

duction of LGM in this manuscript). Additionally, an LDS generally assumes that the

observed variable at each time step t follows a conditional Gaussian distribution, with the

mean being a linear function of the latent variable at the same time step, i.e. another LGM

similar to the one described in Section 2.2.1. The same way as a HMM can be viewed

as a sequential extension of the mixture models, a LDS can be viewed as a sequential

extension of the “static” LGM.

Let us formulate the above principles mathematically. The transition and observation

models of LDS are generally defined as following:

p(zt|zt−1) = N (zt|Atzt−1,Γt), (2.28)

p(xt|zt) = N (xt|Ctzt,Σt), (2.29)

where At defines the transition matrix, Γt represents the process noise, Ct defines the

observation matrix, and Σt represents the observation noise. If we consider a stationary

model, the transition and observation models are assumed to be constant over time, which

implies At = A, Γt = Γ, Ct = C and Σt = Σ. The initial latent variable is also assumed

to follow a Gaussian distribution:

p(z1) = N (z1|µ0,V0). (2.30)

44 Chapter 2: Methodological Background

Similar to the LGM, we can express this generative process in an equivalent form with

additive Gaussian noises:

zt = Atzt−1 + ϵt, with ϵt ∼ N (ϵt|0,Γt), (2.31)

xt = Ctzt + ηt, with ηt ∼ N (ηt|0,Σt), (2.32)

z1 = µ0 + u, with u ∼ N (u|0,V0). (2.33)

In that case where all distributions are Gaussian with linear dependencies, the LDS has

an analytical solution, i.e. there is a closed-form expression of the posterior distribution

of the latent variables, known as Kalman filter [101] (for the causal solution) and Kalman

smoother (for the non-causal solution) [162].

However, the linear-Gaussian assumption can be a significant limitation for real-world

signals with complex dynamics. A widely-used generalization of the Kalman filter to

sequential data with non-linear dynamics is the extended Kalman filter [50, 232], which

is a first-order Gaussian approximation to the Kalman filter based on local linearization

using the Taylor series expansion. Another interesting extension is to combine a set of

LDSs with an HMM, resulting in the switching state space model (also named switching

Kalman filter) [139, 69]. This model segments the sequential data into different regimes,

each regime being modeled by a LDS, and the succession of regimes is ruled by the HMM.

b) Dynamical variational autoencoders. Recently, DNNs, and in particular RNNs,

have been used within DPGM structures to model sequential data. In this line, the dy-

namical variational auto-encoder (DVAE) are a family of powerful DPGMs that extend

the VAE to model complex non-linear temporal dependencies within a sequence of ob-

served data vectors and corresponding (continuous) latent vectors [71]. Roughly speak-

ing, DVAE models can be viewed as combining a VAE with temporal models such as

RNNs and/or SSMs.4 However, it is important to highlight the fundamental distinction

between DVAEs and conventional SSMs. DVAEs break the Markovian dependencies

4The distinction between RNNs and SSMs mainly lies in the preservation of Marko-
vian properties. Due to their definition, SSMs maintain the Markovian properties while
RNNs, with their sophisticated designs, have the potential to surpass Markovian limita-
tions, enabling the modeling of longer temporal correlations.

45

within the latent states and the single-frame latent-observation dependencies, thereby fa-

cilitating more flexible relationships between latent and observed variables.

Using the chain rule, the most general DVAE generative distribution can be written as

the following causal generative process:

pθ(x1:T , z1:T) =
T∏
t=1

pθx(xt|x1:t−1, z1:t)pθz(zt|x1:t−1, z1:t−1), (2.34)

where pθx(xt|x1:t−1, z1:t) and pθz(zt|x1:t−1, z1:t) are arbitrary generative distributions, the

parameters of which are provided sequentially by RNNs taking the respective condition-

ing variables as inputs (and θx and θz denote the respective parameters of these RNNs).

A common choice is to use Gaussian distributions with diagonal covariance matrices:

pθx(xt|x1:t−1, z1:t) = N
(
xt;µθx(x1:t−1, z1:t), diag(vθx(x1:t−1, z1:t))

)
, (2.35)

pθz(zt|x1:t−1, z1:t−1) = N
(
zt;µθz(x1:t−1, z1:t−1), diag(vθz(x1:t−1, z1:t−1))

)
. (2.36)

It can be noted that the prior distribution of zt is more complex than the standard Gaussian

used in the vanilla VAE. Also, the different models belonging to the DVAE class differ in

the possible conditional independence assumptions that can be made in (2.34).

Similarly to the VAE, the exact posterior distribution pθ(z1:T |x1:T) corresponding to

the DVAE generative model is not analytically tractable. Again, an inference model

qϕz(z1:T |x1:T) is defined to approximate the exact posterior distribution. This inference

model factorises as:

qϕz(z1:T |x1:T) =
T∏
t=1

qϕz(zt|z1:t−1,x1:T), (2.37)

Again, the Gaussian distribution with a diagonal covariance matrix is generally used:

qϕz(zt|z1:t−1,x1:T) = N
(
zt;µϕz(z1:t−1,x1:T), diag(vϕz(z1:t−1,x1:T))

)
, (2.38)

where the mean and variance vectors are provided by RNNs (the encoder networks) taking

(z1:t−1,x1:T) as input and parameterized by ϕz. With the most general generative model

46 Chapter 2: Methodological Background

defined in Equation 2.34, the conditional distribution in Equation 2.37 cannot be simpli-

fied. However, if conditional independence assumptions are made in (2.34), the depen-

dencies in qϕz(zt|z1:t−1,x1:T) can be simplified using the D-separation method [24, 64],

see [71] for details. In addition, we can force the inference model to be causal by replac-

ing x1:T with x1:t in Equation 2.37 and Equation 2.38. This is particularly suitable for

online processing.

c) Gaussian process variational autoencoder & latent stochastic differential equations.

All of the LVMs for sequential data that have been discussed so far fall within the cate-

gory of discrete-time systems. By discretizing the time index into uniform intervals, these

models commonly assume regular sampling rates for sequences. However, in real-world

scenarios, typically with multi-sensors, the collected sequential data may be sampled at

irregular time intervals and may include missing values due to the asynchrony of the sen-

sors. Directly applying discrete-time models to these data may not accurately depict the

temporal variations of the variables. In such cases, it becomes crucial to consider the

continuously varying underlying dynamical process. Here, we rapidly present two promi-

nent LVMs designed for modeling sequential data with continuous-time latent states: the

Gaussian process variational autoencoder (GP-VAE) [53, 239] and the latent stochas-

tic differential equations (Latent SDE) [120, 180].

Let xT ∈ RT×d =
{
xτ |τ ∈ T = {t0, t1, ..., tT}

}
denote a sequence of observed

variables measured at timestamps T = {t0, t1, ..., tT} which may consist of irregular time

intervals, and we have t0 < t1 < ... < tT . Let zT ∈ RT×l =
{
zτ |τ ∈ T = {t0, t1, ..., tT}

}
denote the sequence of corresponding latent variables. The joint distribution p(xT , zT) is

supposed to be decomposed as:

pθ(xT , zT) = pθz(zT)
∏
τ∈T

pθx(xτ |zτ). (2.39)

The conditional distribution p(xτ |zτ) is the observation model and is supposed to be a

multivariante Gaussian distribution:

pθx(xτ |zτ) = N (xτ |gθx(zτ), σ
2I), (2.40)

47

with gθx(·) : Rl → Rd a non-linear function parameterized by θx that maps the la-

tent variable to the observation. Similarly to the VAE, it is usually implemented by

the decoder neural network. In parallel, the distribution pθz(zT) is designed to inte-

grate prior knowledge about the dynamic nature of the sequence, which is expected

to adhere to a continuous-time dynamical system. More specifically, the latent vari-

ables zτ are assumed to follow a Gaussian process prior with respect to time t [161]:

z(t) ∼ GP(m(t),k(t, t′)).5 This Gaussian process involves a mean function vector

m(·) : R→ Rl 6 and a covariance function vector k(·, ·) with pre-defined positive-definite

kernel functions. More specifically, the covariance function vector can either be designed

as k ⊗ I, which means that different dimensions of zτ share the same kernel; or as a

vector of kernels k = (k1, ..., kl)
T , meaning that different kernels are applied to differ-

ent dimensions of zτ [97, 23]. The parameters of the mean and covariance functions are

denoted as θz. The true posterior distribution p(zT |xT) is often analytically intractable

due to the non-linear dependency between xτ and zτ . Therefore, similarly to the VAE

and DVAEs, an inference model qϕ(zT |xT) needs to be defined to approximate the exact

posterior distribution. With the aim of increasing approximation accuracy and decreasing

computational complexity, various approximation methods are proposed [33, 53, 96]. For

instance, [53] proposed an approximated inference model as follows:

qϕ(zT |xT) =
l∏

i=1

qϕ(z
i
T |xT), (2.41)

with

qϕ(z
i
T |xT) = N (ziT |µi

ϕ(xT),Λ
i−1

ϕ (xT)). (2.42)

The precision matrix Λi is chosen to be parametrized as a product of bi-diagonal matrices:

Λi := BiTBi,with Bi
tt′ =

bitt′ if t′ ∈ {t, t+ 1}

0 otherwise
. (2.43)

5According to the definition of Gaussian process, the finite latent sequence zT is sup-
posed to follow a joint Gaussian distribution.

6Without loss of generality, the mean function vector m(·) is usually set to 0.

48 Chapter 2: Methodological Background

This approximation breaks the dependencies across different dimensions of z while main-

taining a Markov-like temporal dependency. Furthermore, both the mean vector and the

precision matrix are implemented with an encoder network parameterized by ϕ.

Another approach to continuous-time dynamical modeling involves applying a SDE

on the latent space. In this context, the latent variables z(t) are supposed to follow a prior

distribution governed by an SDE [120]:

dz = fθ(z, t)dt+ L(z, t)dβ, (2.44)

where fθ(z, t) is the drift function parameterized by neural networks, L(z, t) is the dis-

persion matrix, β is a Brownian motion with diffusion matrix Q. The initial condition is

z(t0) = z0. As the observation model pθx(xτ |zτ) is parameterized by neural networks,

the posterior distributions of z(t) are usually intractable. They can be approximated, for

instance, by another SDE. Furthermore, if the SDEs are linear time-invariant, the latent

SDE models can be connected to the GP-VAE models with Markovian kernels [239]. In

that case, the latent states can be derived using Kalman filtering and Kalman smooth-

ing, which can largely reduce the computation complexity of the GP-based methods from

O(T 3) to O(T).

2.3 LEARNING AND INFERENCE OF THE LATENT VARIABLE MODELS

In the previous section, we have presented a branch of LVMs that employ different types

of latent variables to model different types of data. We recall that one of the primary

goals of LVMs is to infer the posterior distributions of the latent variables. While some

LVMs allow for analytical solutions, others do not, as briefly mentioned earlier. In this

section, we will systematically address this aspect and introduce the general principles for

learning and inference in LVMs.

2.3.1 POSTERIOR INTRACTABLILITY AND APPROXIMATE INFERENCE

Given a set of datapoints D = {x1, ...,xN} and a parametric probabilistic model pθ with

parameters θ ∈ Θ, we would like to find the optimal values of the parameters θ that best

49

fit the model with the dataset. In statistical machine learning, this is usually done by

maximizing the loglikelihood pθ(D). In the context of LVMs, computing the marginal

likelihood pθ(x) involves integrating the joint distribution pθ(x, z) over the latent variable

z. This is often a difficult task. As we have seen in the LVM examples in the previous sec-

tion, the joint distribution can be factorized as pθ(x, z) = pθ(x|z)pθ(z). When the latent

variable z is continuous, analytical computation of the integration is feasible in certain

specific scenarios with conjugate priors, particularly when the dependencies between x

and z are linear [141]. Conjugate prior means that both the prior pθ(z) and the likelihood

pθ(x|z) share the same functional form. This often occurs when both distributions belong

to the exponential family. Otherwise, we say that the marginal likelihood is analytically

intractable. When the latent variable z is discrete, computing the sum across all potential

values of z is theoretically feasible. However, in practice, the summation may scale expo-

nentially and be extremely expensive. In such a case, we say that the marginal likelihood

is computationally intractable.

As we mentioned in the previous sections, in addition to estimating the model param-

eters, we are also interested in inferring the posterior distribution pθ(z|x). According to

Bayes’ rule: pθ(z|x) = pθ(x|z)pθ(z)
pθ(x)

, if the marginal likelihood pθ(x) is intractable, the

posterior distribution is not tractable either. Therefore, we need to resort to approxi-

mate inference methods to solve the problem. Various approximation approaches exist

and differ from each other in their trade-off between accuracy, speed, and applicability.

These methods generally fall into two categories: variational inference (VI) [213, 40]

and Markov Chain Monte Carlo (MCMC) sampling [82, 65, 174]. In this dissertation,

we primarily focus on the variational inference methods.

2.3.2 A GENERAL INTRODUCTION TO VARIATIONAL INFERENCE

Variational methods represent a very broad umbrella encompassing diverse techniques

that aim at addressing functional7 optimization problems. In the realm of variational

inference, the fundamental concept involves seeking a distribution q(z) that minimizes

7A functional is defined as a mapping from a space x into the field of real or complex
numbers.

50 Chapter 2: Methodological Background

the discrepancy between this proposed distribution and the exact posterior distribution

pθ(z|x) [213, 40]. The typically used measure of discrepancy for optimization is the

Kullback-Leibler (KL) divergence DKL
(
q(z)||pθ(z|x)

)
, defined by

DKL
(
q(z)||pθ(z|x)

)
= Eq(z)

[
log q(z)− log pθ(z|x)

]
= Eq(z)

[
log q(z)− log pθ(x, z) + log pθ(x)

]
. (2.45)

As the term log pθ(x) is independent with q(z), we can take it out of the expectation. By

moving the DKL term to the right side of the equation and the expectation term to the left

side, we obtain

Eq(z)

[
log pθ(x, z)− log q(z)

]
= log pθ(x)−DKL

(
q(z)||pθ(z|x)

)
. (2.46)

As the KL divergence is always greater than zero, the expectation term on the left-hand

side is always smaller than the marginal log-likelihood (which is also called ‘evidence’

in Bayes’ formula). Therefore, the expectation term is a lower bound of the evidence and

is named the Evidence Lower BOund (ELBO). On the one hand, since log pθ(x) is inde-

pendent of q(z), minimizing the KL divergence w.r.t. q is equivalent to maximizing the

ELBO w.r.t. q. On the other hand, searching for the optimal parameters θ that maximize

the intractable marginal log-likelihood log pθ(x) can be transformed into searching for

θ that maximizes the ELBO. Therefore, the objective of fitting the model is to find the

optimal θ and q that jointly maximize the ELBO:

L(θ, q;x) = Eq(z)

[
log pθ(x, z)− log q(z)

]
. (2.47)

When the exact posterior distribution pθ(z|x) can be expressed in closed-form and is com-

putationally tractable, the maximum of the ELBO w.r.t. q is achieved when q(z) equals

to this exact posterior distribution. In that case, the KL divergence vanishes, allowing for

exact inference. In such a case, we can solve the optimization problem over θ by applying

the expectation-maximization (EM) algorithm [43, 24]. Otherwise, we need to propose

a restricted distribution family for q(z) and seek the member of this family that minimizes

51

the KL divergence. The key point of success for VI is to find a family of q(z) functions

that is tractable, easy to sample from, and flexible enough so that it can provide a good

approximation to the exact posterior distribution. Based on the constraints that we im-

pose on this family of functions, the VI approaches can be broadly categorized into two

groups: the free-form VI with mean-field approximation and the fixed-form VI employing

gradient-based optimization. In the following subsections, we first rapidly present the EM

algorithm, and then we present the free-form and fixed-form VI methods in more detail.

2.3.3 EXACT INFERENCE AND EM ALGORITHMS

The EM algorithm is an iterative optimization procedure that maximizes the ELBO w.r.t.

the inference distribution q (E-step) and the model parameters θ (M-step) respectively [43,

24]. It generally starts with an arbitrary value θold. During the E-step, by setting q(z) =

pθold(z|x), it cancels out the KL term of Equation 2.46 with θ = θold. As a consequence,

L(θ, q;x) becomes a tight lower bound of the log-likelihood to be maximized. As for the

M-step, the ELBO becomes:

L(θ, q;x) = Ep
θold (z|x)

[
log pθ(x, z)

]
− Ep

θold (z|x)
[
pθold(z|x)

]
. (2.48)

The second term in the right-hand side of Equation 2.48 is the negative entropy of pθold(z|x)

and is independent of θ. Therefore, maximizing the ELBO amounts to maximizing the

first term in the right-hand side, which is often referred to as “the Q function” in the EM

literature and is denoted Q(θ, θold). In summary, the exact EM algorithm starts by setting

θ = θold and then alternates between the two following steps.

• E-Step: Set q(z) = pθold(z|x) and then computeQ(θ, θold) = Ep
θold (z|x)

[
log pθ(x, z)

]
,

• M-Step: Estimate θnew = argmax
θ

Q(θ, θold) and then set θold = θnew.

2.3.4 FREE-FORM VI AND MEAN-FIELD APPROXIMATION

One way to approximate the posterior distribution is to break the dependencies between

sub-groups of latent variables and factorize the approximate posterior distribution into the

52 Chapter 2: Methodological Background

product of corresponding terms:

q(z) =
J∏

j=1

qj(zj). (2.49)

The factorized form of variational inference is often referred to as the mean-field ap-

proximation [153], which was first developed in physics. We should emphasize that in

the mean-field approximation, the sole assumption is the independence between the sub-

groups of latent variables. There is no necessity to make further assumptions regarding the

specific functional form for each qj . In fact, the optimal distribution form can be derived

directly by maximizing the ELBO w.r.t. each distribution group. Therefore, the mean-

field approximation methods are also referred to as free-form VI [141]. In the following,

we will see how to iteratively obtain the optimal solution for each qj .

Let us substitute Equation 2.49 into Equation 2.47, resulting in:

L(θ, q1, ..., qJ ;x) = E∏
j qj(zj)

[
log pθ(x, z)

]
−

J∑
j=1

Eqj(zj)

[
log qj(zj)

]
. (2.50)

When optimizing L(θ, q1, ..., qJ ;x) w.r.t. qj , we only need to keep the terms related with

qj and write the other terms as constants:

L(qj;x) = Eqj(zj)

[
E∏

i ̸=j qi(zi)

[
log pθ(x, z)

]]
− Eqj(zj)

[
log qj(zj)

]
+ const. (2.51)

If we introduce a new distribution p̃(x, zj) =
exp(E∏

i̸=j qi(zi)

[
log pθ(x,z)

]
)

Zj
, with Zj the nor-

malization constant, then, Equation 2.51 can be written as the negative KL divergence

between qj(zj) and p̃(x, zj):

L(qj;x) = −DKL(qj(zj)||p̃(x, zj)) + const. (2.52)

The optimal value is obtained when the KL divergence equals zero, which means:

q∗j (zj) =
exp(E∏

i̸=j qi(zi)

[
log pθ(x, z)

]
)

Zj

, (2.53)

53

with

Zj =

∫
exp(E∏

i ̸=j qi(zi)

[
log pθ(x, z)

]
)dzj. (2.54)

We note that the functional form of each qj is not pre-defined, but is obtained by com-

puting the exponential of the expectation of the joint log-distribution over all other latent

variables. Further, we remark that the solution for the factor qj indeed depends on the

other factors qi. Therefore, the global solution is obtained by iteratively estimating each

of the qj [24]. We first have to initialize all the factors to an appropriate form and then

update them with Equation 2.53, each in turn, cyclically, and in an arbitrary order. This

provides the basis of the E-steps of the variational EM algorithm, summarized below.

The variational expectation-maximization (VEM) algorithm combining the general

VI principle and the mean-field factorization can be summarized as iterating between the

two following steps (with initialization with θ = θold).

• Variational E-Steps: For j ∈ {1, ..., J}, compute qj(zj) with Equation 2.53.

• M-Step: Estimate θnew = argmax
θ

(L(θ, q;x)), with all factors qj(zj) being fixed as

the output of the E-steps, and then set θ = θnew in Equation 2.53.

2.3.5 FIXED-FORM VI AND GRADIENT-BASED OPTIMIZATION

An alternative approximation method involves selecting a suitable functional form for

q(z) and optimizing the ELBO using gradient-based techniques. Typically, q(z) is cho-

sen from a parametric distribution family, denoted as qϕ(z) [141]. The commonly used

distribution forms for continuous latent variables are the exponential families.

Gradient-based optimization methods require the computation of gradients w.r.t. both

the generative parameters θ and the inference parameters ϕ. The gradients w.r.t. θ are easy

to compute since we can directly move the gradient operation inside the expectations:

∇θL(θ, ϕ;x) = ∇θEqϕ(z)

[
log pθ(x, z)− log qϕ(z)

]
,

= Eqϕ(z)

[
∇θ log pθ(x, z)

]
. (2.55)

Nevertheless, the expectations w.r.t. qϕ(z) are usually analytically intractable. It can be

54 Chapter 2: Methodological Background

approximated with one-sample Monte Carlo estimation:

∇θL(θ, ϕ;x) ≈ ∇θ log pθ(x, z
i), (2.56)

with zi ∼ qϕ(z). Conversely, the gradients w.r.t. ϕ are more complicated to compute as

the parameters ϕ are involved within the expectations. To address this problem, various

methods have been developed. One approach is to employ the log-derivative trick and

derive the REINFORCE gradient estimator [56]. This gives rise to the blackbox varia-

tional inference (BBVI) method [160]. Limited by space, we will not delve into further

details about this method. Another kind of solution is the reparametrization trick [107],

which proposes to rewrite the latent variable z as some differentiable and invertible trans-

formations g of another random variable ϵ that follows a known distribution p(ϵ), which

means that z = g(ϵ, ϕ). By simply applying the change of variable formula, we can write

the gradient of the ELBO w.r.t. ϕ as follows:

∇ϕL(θ, ϕ;x) = ∇ϕEqϕ(z)

[
log pθ(x, z)− log qϕ(z)

]
,

= ∇ϕEp(ϵ)

[
log pθ(x, g(ϵ, ϕ))− log qϕ(g(ϵ, ϕ))

]
,

= Ep(ϵ)

[
∇ϕ

(
log pθ(x, g(ϵ, ϕ))− log qϕ(g(ϵ, ϕ))

)]
. (2.57)

Again, the expectation w.r.t. p(ϵ) can be approximated with the one-sample Monte Carlo

estimation:

∇ϕL(θ, ϕ;x) ≈ ∇ϕ

(
log pθ(x, g(ϵ

i, ϕ))− log qϕ(g(ϵ
i, ϕ))

)
, (2.58)

with ϵi ∼ p(ϵ).

Another challenge for gradient-based optimization techniques is that for local latent

variables, we need to estimate the inference parameters ϕn of the approximate posterior

distribution qϕn(zn|xn) for each data sample xn. This process is very time-consuming

and makes it hard to scale up when dealing with large datasets. An alternative approach is

to use neural networks for parameterization, which take the data sample xn as input and

predict the parameters ϕn as ϕn = fϕ(xn), with ϕ the parameters of the neural networks.

55

This technique is known as amortized variational inference [67]. The key idea be-

hind amortized variational inference is to “amortize” the computational cost of inference

across the entire dataset. Instead of performing costly optimization for each data point

individually, the inference network learns to generalize across the dataset, providing fast

and approximate posterior inference for new data points.

By integrating the reparametrization trick and the amortized variational inference tech-

niques, VAEs leverage deep neural networks to parameterize both the generative and in-

ference models. The optimization of the ELBO is performed concurrently with respect to

both θ and ϕ using stochastic gradient descent (SGD) techniques [173]. This enables the

effective training of VAEs with large datasets.

2.4 DEEP ARCHITECTURES FOR SEQUENTIAL DATA MODELING

The advent of deep neural network (DNN) [73, 234] in the last decade has pushed tradi-

tional statistical machine learning one step forward, opening up the possibilities to scale

up statistical methods for handling very large datasets. By stacking multiple non-linear

layers together, DNNs offer a prominent means to improve model expressivity, enabling

the construction of models depicting intricate (non-linear) dependency structures within

the data [73]. Additionally, the stochastic gradient descent (SGD) technique provides an

effective approach to optimizing the learning objective and estimating model parameters.

This is very important because it allows us to attain a good enough approximation of the

model parameters even when no analytical solution exists. In particular, the success of the

VAE demonstrates the huge potential of integrating DNNs with probabilistic generative

models. As discussed in Section 2.1, we refer to these models as deep probabilistic gener-

ative model (DPGM). In this manuscript, we primarily focus on applications of DPGMs

to sequential data. Hence, this section gives a concise presentation of deep architectures

designed for modeling sequential data.

Before diving into the details of different model architectures, we first make a distinc-

tion between different types of sequential data modeling tasks that are commonly encoun-

tered in machine learning. Specifically, we can identify three scenarios, see [140], Section

56 Chapter 2: Methodological Background

15.2: Seq2Vec, Vec2Seq and Seq2Seq. Seq2Vec means that the input of the model is a

sequence, while the output is a vector. This kind of model is usually used for sequence

classification, such as sentence sentiment analysis. Vec2Seq indicates that the input of the

model is a vector, while the output is a sequence. This kind of model is generally used

for sequence generation, such as image captioning. Finally, Seq2Seq refers to the models

with both sequential input and output. The Seq2Seq models are often implemented with

an encoder-decoder architecture. In this section, we focus our discussion on Seq2Seq

models.

2.4.1 RECURRENT NEURAL NETWORKS

The recurrent neural networks (RNNs) [122] stand as widely adopted deep learning

models when dealing with sequential data. These models specialize in capturing sequen-

tial patterns and preserving historical context within a sequence by utilizing a hidden state

mechanism. The hidden states are computed in a recurrent way so that at each time step,

they can absorb new information from the input at the same time step while conserving

a trace of all the past information. More precisely, let x1:T ∈ RT×d denote the input se-

quence, and let ht−1 ∈ Rh denote the hidden state at time t− 1. The hidden state at time

t is computed as follows:

ht = α(Wxhxt +Whhht−1 + bh), (2.59)

with Wxh ∈ Rd×h and Whh ∈ Rh×h the weights of the model, bh ∈ Rh the bias of the

model, and α a non-linear activation function.

A Seq2Seq model implemented with RNNs was proposed in [192] to generate se-

quences. It comprises an RNN encoder that encodes the input sequence into a context

vector c, typically derived from the hidden state vector, computed using Equation 2.59, at

the last time step of the sequence, denoted as c = hT . This vector encapsulates informa-

tion from the entire sequence. Then, the decoder utilizes this context vector to generate

the output sequence with another RNN. Specifically, the output vector of the decoder at

57

time t is generated as

yt = Whyh
dec
t + by, (2.60)

with Why and by the weights and bias of the model and hdec
t the hidden state at time t of

the decoder RNN. hdec
t is computed as

hdec
t = α′(Wch[c,yt−1] +Wdec

hh h
dec
t−1 + bdec

h), (2.61)

with Wch, Wdec
hh and bdec

h the weights and bias of the model and [c,yt−1] the concatena-

tion of the two vectors.

We can make several remarks about this kind of Seq2Seq model. First, as the hidden

state is computed by recurrently multiplying the hidden state at the previous time step

with the model weights, the RNNs are known to suffer from the gradient exploding and

vanishing problems. In fact, when training very deep models with many stacked layers,

the gradients tend to become either very large (corresponding to the gradient exploding

issue) or very small (corresponding to the gradient vanishing issue). These tendencies

can significantly impede the effective training of RNNs [108]. To remedy this issue,

more sophisticated RNN architectures such as the long short-term memory (LSTM)

[89] and gated recurrent units (GRU) [37] have been proposed and were prominent

tools for sequential data modeling tasks for years. Second, by inspecting Equation 2.60

and Equation 2.61, we find them similar to Equation 2.32 and Equation 2.31 of the LDS.

Nevertheless, we need to point out three main differences between RNNs and LDS. The

first is that the RNN is a deterministic model, while the LDS is a probabilistic model with

stochasticity modeling of noise. The second is that RNN enables non-linear dependencies

within the hidden states, while the original LDS only permits linear dependencies. And

the third is that Equation 2.60 and Equation 2.61 show that each generated vector yt

not only depends on the previously generated vector yt−1, but on all past vectors via

ht−1. This helps RNNs to overcome the limitations of standard Markov assumptions

in LDS, and enables them to have unlimited memory in theory. We observe that yt is

generated in an auto-regressive way by using the past values y1:t−1. In practice, the model

is trained by passing the ground truth values. And this training strategy is called teacher

58 Chapter 2: Methodological Background

forcing [219]. However, at test time, we no longer have the ground truth past values,

and previously generated past values are used instead. This can lead to a significant

decrease in the performance of the model (this is a particular case of train/test mismatch).

A common solution to this problem is to resort to scheduled sampling, which consists in

gradually replacing the ground truth past values with the generated ones during training

[14]. We will make some investigations on this problem in Chapter 7. Finally, we can

further enhance the performance of the RNNs by applying the bidirectional RNNs, which

encompass information from both the past and future [181].

2.4.2 1D CONVOLUTIONAL NEURAL NETWORKS

The convolutional neural network (CNN) is a very popular type of DNNs that were

initially designed for modeling 2D inputs such as images [115]. However, they can also

be adapted to 1D inputs for sequential data modeling. Typically, the input sequence x1:T ∈

RT×d is convolved with several 1D kernels. More precisely, we convolve each dimension

of the successive input vectors with a different kernel separately and add up the results to

obtain one dimension of the output vector: yt,j = α(
∑d

i=1 x
T
t:t+k,iwi,j). wi,j is the kernel

for input dimension i and output dimension j, t is the temporal index, k is the kernel

size and α is a non-linear activation function. By applying J times convolution over the

entire sequence, we obtain a sequence of output vectors y1:T ′ ∈ RT ′×J . We should note

that the output sequence length T ′ does not necessarily equal the input sequence length

T . In contrast, we usually have T ′ < T . Indeed, in convolutional computations, several

techniques exist to handle output sequence length. One effective method is known as

strided convolution, which involves skipping every s frames of input when computing

the convolutions, where s represents the stride size [49]. If we choose a stride size greater

than 1 during the convolution, we can get a much shorter output sequence than the input

sequence. Another technique is to pad the input data at the beginning and the end of

the sequence with pre-defined values. If we would like to obtain an output sequence

with the same length as the input, we need to appropriately choose the padding size. An

alternative way to make the output sequence length equal to the input sequence is to design

59

an encoder-decoder architecture. The encoder will embed the long input sequence into a

much shorter sequence, or even into a vector, with convolutional layers, while the decoder

will decode the obtained sequence to its original length with deconvolutional layers [49].

When leveraging 1D CNNs for sequential data analysis or generation, causal CNNs

are frequently employed to enable real-time processing. This involves applying a mask

during convolution, ensuring that the output vector accesses only past input values. Addi-

tionally, in order to capture long-term temporal dependencies effectively, dilated convolu-

tions can be applied to increase the receptive field of the convolutional layers [230]. The

dilated convolution method computes the convolutions by taking every r’s input frame,

with r referred to as the dilation factor. These techniques are successfully employed in

the Wavenet model [203] for text-to-speech (TTS) synthesis. Furthermore, the authors

of [7] conducted experiments to compare the performance of convolutional networks and

recurrent networks across various sequence modeling tasks. Their findings led to the con-

clusion that simple convolutional architectures outperform recurrent networks, such as

LSTMs, across a diverse range of tasks. Today, 1D CNNs are widely used across vari-

ous machine learning domains, particularly in tasks related to raw (time-domain) audio

signals modeling [131, 42].

2.4.3 ATTENTION MECHANISM AND TRANSFORMERS

In Section 2.4.1, we introduced the Seq2Seq model with RNNs. In this model, the in-

formation of the entire input sequence is embedded into a single vector hT and fed into

the decoder. When the decoder generates the output sequence, each output vector yt has

access to the same information coming from the input sequence. However, output vec-

tors at different time steps may have different temporal dependencies on the information

from the input sequence. Thus, it is desirable to design an architecture so that each yt

has dynamic access to information from the input vectors at different time steps. This is

the seminal idea of the attention mechanism proposed in [6]. Concretely, the attention

mechanism is based on three primary components: queries Q ∈ RT×d, keys K ∈ RT×d

and values V ∈ RT×v. For instance, in the Seq2Seq approach, the queries can be the

60 Chapter 2: Methodological Background

right-shifted hidden state vectors of the decoder RNN: Q = hd
0:T−1, while the keys and

values can be the hidden state vectors of the encoder RNN: K = V = he
1:T . To obtain

the output of the attention module at a certain time step t, we first need to compute the

similarity between the query vector at time t, Qt, and each of the key vectors Kt′ with

a certain scoring function: att′ = a(Qt,Kt′). Note that the similarity scores have the

following properties: 0 < att′ < 1, and
∑T

t′=1 att′ = 1. These properties are typically

guaranteed by applying the softmax function. Then, the output vector yt is computed as a

weighted sum of the values: yt =
∑T

t′=1 a(Qt,Kt′)Vt′ . This architecture enables the out-

put vectors to have more flexible dependencies on the input vectors. The similarity score

function a(Qt,Kt′) is usually defined in terms of a kernel function, such as the Gaussian

kernel function.8 In practice, the scaled dot-product attention is commonly employed

[207]:9

a(Qt,Kt′) =
QtK

T
t′√

d
. (2.62)

The output of the scaled dot-product attention is therefore:

Attention(Q,K,V) = softmax
(QKT

√
d

)
V. (2.63)

Incorporating the attention mechanism to link the encoder and decoder within the

RNN-based Seq2Seq model significantly enhanced its performance, establishing it as the

state-of-the-art model for machine translation tasks during that period [6, 132].

As the attention mechanism makes itself a sequence-to-sequence mapping architec-

ture, we can wonder if it is possible to replace all the RNN modules in a Seq2Seq model

with the attention mechanism and thus construct a Seq2Seq model solely based on atten-

tion. This basic idea led to the creation of the powerful Transformers [207]. Similar

to the RNN-based Seq2Seq model, the Transformer is also composed of an encoder and

a decoder. (See Figure 2.1 for an overview of the Transformer architecture.) The en-

coder transforms an input sequence x1:T into a representation sequence z1:T using several

8The Gaussian kernel function is defined as k(x,x′) = 1√
2πσ2

e−
(x−x′)T (x−x′)

2σ2 .
9Note that the division by

√
d is to ensure that the variance of the dot product remains

unchanged regardless of the size of the inputs.

61

Positional
Encoding

Encoder

Input
Embedding

Multi-Head
Attention

Layer
Norm

Feed
Forward

Inputs

Layer
Norm

Linear
Multi-Head
Attention

Multi-Head
Attention

Layer
Norm

Layer
Norm

Layer
Norm

Feed
Forward

Decoder

Positional
Encoding

Q

K

V
Causal Mask Causal Mask

N x

N x

Input
Embedding

Outputs
(shifted right)

Softmax

Outputs

Figure 2.1: The model architecture of Transformer. This figure is adapted from Figure 1
of paper [207].

stacked encoder layers. Each of the encoder layers is composed of two sub-layers: a self-

attention layer and a feed-forward layer. The queries, keys, and values of the self-attention

layer are typically different linear projections of the input sequence. This design aims

at extracting the inner temporal correlations within the sequence. The fully connected

feed-forward layer is applied at each time step separately and identically, indicating that

vectors at different time steps share the same weights. The feed-forward layer can also

be understood as convolutions with kernel size 1, and it is designed to aggregate infor-

mation across the different dimensions for each temporal position in parallel. Residual

connections and layer normalization are applied to both of these two sub-layers to avoid

gradient vanishing. The decoder generates the output sequence y1:T in an auto-regressive

manner with stacked decoder layers. Each of the decoder layers contains three sub-layers:

a self-attention layer, a cross-attention layer and a feed-forward layer. The input of the

decoder is the right-shifted (previously) generated sequence y0:T−1. To ensure that the

output vector at each time t only has access to the generated vectors up to time t − 1, a

causal mask is applied to the self-attention layer. Between the self-attention layer and the

feed-forward layer, there is a cross-attention layer to connect the encoder and the decoder.

The queries of the cross-attention layer are the outputs of the self-attention layer of the

decoder, while the keys and values are the outputs of the encoder, i.e. the representation

sequence z1:T . Similar to the encoder, residual connection and layer normalization are

applied to each of the sub-layers of the decoder.

62 Chapter 2: Methodological Background

All of the attention modules employed in the Transformer are the scaled dot-product

attention that we mentioned above. Furthermore, in order to capture different kinds of

temporal dependencies, multi-head attention (MHA) is applied. Specifically, in the

MHA module, the original queries, keys and values are linearly projected h times to

different sets of lower-dimensional vectors, using h different sets of learned linear projec-

tions, called ‘heads’. The attention function is applied to each of these projected versions

of the (queries, keys, values) sets, resulting in h heads functioning in parallel. Finally,

the output of the h heads are concatenated together to give the final output of the MHA

module. Let Q ∈ RT×d, K ∈ RT×d and V ∈ RT×d 10 denote the queries, keys, and values,

respectively. The MHA module can be expressed as follows:

MultiHead(Q,K,V) = Concat(head1, head2, ..., headh)W
O, (2.64)

headi = Attention(QWQ
i ,KWK

i ,VWV
i), (2.65)

with WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk and WV
i ∈ Rd×dv the projection weights for queries,

keys and values, respectively for headi, and WO ∈ Rhdv×d the projection weights for the

output.

One problem with the attention mechanism is that it inherently disregards the order of

vectors in a sequence, although this order may be of great importance in dynamical data

sequences. Therefore it becomes necessary to incorporate into the model some informa-

tion on the absolute or relative position of the successive data vectors. In the Transformer

architecture, positional information is encoded into a sequence of vectors with the same

dimensions as the input sequence. These positional encodings are then added to the input

sequence before entering the self-attention layer of the encoder. One way of encoding the

10To keep consistency with the original paper [207], we suppose that the queries, keys
and values have the same dimension d, which is also called the model dimension.

63

positional information is to use the cosinus and sinus function of different frequencies:

pi,2j = sin(
i

10000
2j
d

), (2.66)

pi,2j+1 = cos(
i

10000
2j
d

), (2.67)

where i is the index of sequential position and j is the index of dimension in the vector

[207]. This positional encoding allows the model to learn to attend to relative positions.

The Transformer architecture has achieved remarkable success in modeling sequential

data. One of the most important contributions of the Transformers is that it overcome the

sequential computation constraints of RNN-based models. 11 It makes every position in

the input sequence directly accessible to every position in the output sequence. As a re-

sult, the model no longer relies on remembering the entire sequence. These characteristics

enable Transformers to easily scale up for large datasets with large model sizes. This ar-

chitecture has demonstrated compelling success across various domains, such as natural

language processing [30, 45], computer vision [48], speech processing [80], and rein-

forcement learning [34]. The scalability of Transformers has also revolutionized genera-

tive models for sequential data. Particularly, the Generative Pre-trained Transformer

(GPT) models [30, 158, 146] and the ChatGPT product of OpenAI have showcased very

impressive language generation performance. On the other hand, a new trend in the deep

learning development pathway is to pre-train large-scale models using vast amounts of

data via self-supervised training objectives. These resulting models are sometimes called

foundation models [28]. The development of Transformers also oscillates with this trend.

2.5 EXAMPLES OF APPLICATIONS TO AUDIO, IMAGE, AND VIDEO

PROCESSING

To conclude this chapter, let us discuss a few examples of practical applications of the

above-mentioned techniques for audio, image, and video processing tasks. The goal is

11The sequential computation constraints of RNN-based models make them poorly
suitable for parallelism, consequently slowing down the training process.

64 Chapter 2: Methodological Background

both to illustrate the interest and power of the presented models on practical tasks and to

rapidly introduce the tasks we have considered in our own PhD work (knowing that more

technical details will be given in the corresponding chapters).

In a general manner, probabilistic generative models have found extensive applications

across various domains, even before the booming of deep learning approaches. For ex-

ample, in the field of natural language processing, latent Dirichlet allocation (LDA),

a three-level hierarchical Bayesian model designed for discrete data, has become a very

classical approach for topic modeling [27]. In the pre-deep-learning era of speech process-

ing, the HMM-GMM model has been the state-of-the-art in automatic speech recognition

for about a decade [228]. In the field of computer vision, probabilistic graphical models

have been widely used for a branch of classical tasks such as image labeling, segmenta-

tion, and denoising, object detection, recognition, and tracking [98]. Over the past decade,

the rapid development of deep learning methods has revolutionized these fields. Training

sophisticatedly designed DNN architectures has resulted in remarkable performance, of-

ten largely surpassing previous achievements. Designing strategies for integrating deep

learning approaches and statistical machine learning models to ensure a balance between

interpretability and high performance has emerged as a critical challenge. In this section

and in our developments described in the next chapters, our focus will be on three spe-

cific tasks that illustrate this challenge: multi-target tracking, single-channel audio source

separation, and speech enhancement in noise. In this section, we will briefly define each

task and review several remarkable techniques developed in these fields.

2.5.1 MULTI-TARGET TRACKING

Multi-target tracking (MTT), in its general sense, refers to the problem of detecting,

identifying, and recovering the trajectories of multiple moving objects given a series of

noisy measurements from the sensor(s) [212]. Originating from aerospace applications

in the 1960’s, MTT has a long history spanning over 60 years. It finds wide applica-

tions across diverse fields, encompassing video surveillance, defence, air traffic control,

biomedical research, autonomous driving, and human-robot interaction. MTT is a com-

65

plex task that requires a blend of mathematical modeling and engineering techniques.

Indeed, MTT can be segmented into several sub-tasks: (i) extracting source observations

(also called detections) from the raw sensor measurements at every time frame; (ii) asso-

ciating observations to sources consistently over time; (iii) modeling the dynamics of the

sources’ movements and filtering the obtained object trajectories; and (iv) accounting for

the birth and death process of source trajectories (i.e. the fact that sources may appear and

disappear from the observed scene along time). In the field of computer vision, cameras

are the most commonly used sensors. The main object of MTT consists here of estimat-

ing the positions of all objects of interest in the video, assigning a unique identity to each

object, and keeping the same identity for all the frames in which that object appears. In

such a case, MTT is also referred to as multi-object tracking (MOT) [128, 38], and we

will use this term hereinafter.

In MOT, sub-task (i) (referred to as object detection) is often processed separately

from (and previously to) the other sub-tasks. Tracking approaches under this paradigm

are referred to as tracking-by-detection methods [4, 221, 38, 128]. In the tracking-by-

detection paradigm, a detector is initially employed to extract the positions of objects of

interest in each frame, commonly represented as detection bounding boxes (DBBs). Re-

cent advancements in powerful detection algorithms have notably improved performance

[166, 165, 83]. Utilizing these DBBs, diverse methodologies have been developed to link

and construct the corresponding trajectories. This process is sometimes called data as-

sociation. Before the widespread application of deep learning, statistical methods lever-

aging Bayesian filtering, such as the joint probabilistic data association filter (JPDAF)

[10], the multiple hypothesis tracking (MHT) [26], and multitarget filters based on ran-

dom finite sets (RFSs) [134], had achieved great success. The booming development of

deep learning in the field of computer vision facilitates the integration of appearance in-

formation into tracking algorithms, leading to new research directions [38]. Furthermore,

recent studies within the computer vision community suggest that the two-stage tracking-

by-detection algorithms may exhibit inferior performance because the accuracy of the

tracking algorithm heavily relies on the quality of the detections [16]. New trends in the

66 Chapter 2: Methodological Background

community tend to combine the detection and tracking models together so as to jointly

improve the detection and tracking performance [16, 237, 235]. However, tracking meth-

ods solely based on appearance information may have several limitations. For instance,

in scenarios involving moving cameras, long-term occlusions, non-linear motion dynam-

ics, poor illumination conditions, and similar object appearances, these approaches might

encounter problems such as false negatives and identity switchs. These issues can hinder

robust long-term tracking performance.

On the other hand, the dynamics of the objects’ motion encapsulate rich information

for tracking. Properly integrating motion information can help enhance overall tracking

performance, as effectively demonstrated in recent studies [5, 16, 179]. A widely adopted

method to integrate motion information into tracking algorithm involves refining track-

ing trajectories with the Kalman filter [19, 221, 16], which is based on a linear dynamic

motion model (see Section 2.2.2). While a linear dynamical model is suitable in cases of

high sampling rates and reasonable object velocity, challenging tracking scenarios with

low sampling rates, moving camera, and high object velocity are still difficult to tackle

with such simple models. To address these issues, more sophisticated nonlinear dynamical

models using RNNs have been proposed [177, 5, 138, 222, 214, 225, 121, 46]. Neverthe-

less, the tracking ability of deterministic dynamical models is still limited when dealing

with complex and challenging object motions. An alternative approach involves the appli-

cation of DPGMs. Rather than modeling trajectories deterministically, deep probabilistic

generative motion models describe the trajectory distributions, offering enhanced accu-

racy and flexibility. Additionally, they can also be used to generate reasonable bounding

boxes when the detections are missing, which will greatly increase the tracking perfor-

mance in scenarios of long-term occlusions. A new proposed MOT method based on

DPGMs, in the present case DVAEs, will be presented in detail in Chapter 3.

2.5.2 SINGLE-CHANNEL AUDIO SOURCE SEPARATION

Audio source separation (ASS) is a fundamental task in speech/audio signal process-

ing [209]. It focuses on isolating each source of interest from a mixture of audio sig-

67

nals, which typically include speech, music, and noise. Dating back to the 1950s, when

it was initially framed as the “cocktail party problem”12 [36], this challenging problem

has been studied for over 70 years. According to the number of recording microphones,

ASS methods can be categorized into single-channel and multi-channel methods. More-

over, the multi-channel setting can also be of various types and complexity [190]. In this

manuscript, we focus on the single-channel audio source separation (SC-ASS) meth-

ods.

Audio signals are typically high-dimensional. For instance, a one-second audio clip,

recorded at 16kHz, produces a signal represented as a vector of dimension 16,000. Han-

dling raw (time-domain) waveform signals directly poses significant challenges in audio

processing tasks. To circumvent this problem, and also to exploit the inherent struc-

ture of audio signals, a common approach consists of converting the waveform signals

into a time-frequency representation using methods like the short-time Fourier transform

(STFT). In the pre-era of deep learning, numerous statistical approaches emerged for

separating audio sources in the time-frequency domain. One of the most commonly

employed methods is time-frequency masking and filtering. The fundamental concept

involves applying a filter (mask) to the STFT of the mixed signal to obtain an estima-

tion of the individual source signal. The time-frequency mask estimation relies on sig-

nal statistics, leading to different types of estimators. For instance, the optimal solution

for a linear minimum mean-square-error (LMMSE) estimator is the famous Wiener filter

[209]. Another commonly used mask is the ideal binary mask (IBM), which allocates

each time-frequency bin of the STFT of the mixed signal to a specific source. The STFT

is based on the W-disjoint assumption, asserting that in each time-frequency bin, only

one audio source is dominant, meaning that it has significantly higher energy compared

to the other sources [227]. A prominent method that extends the principles of the IBM

is computational auditory scene analysis (CASA) [216]. CASA leverages the perceptual

principles of auditory scene analysis to segregate mixed signals [29]. It utilizes auditory

12This term originates from the scenario where, in a noisy cocktail party setting, an
individual tries to focus his attention on a single speaker despite the various interfering
sounds around.

68 Chapter 2: Methodological Background

perceptual cues to group the time-frequency bins of the mixture signal both simultane-

ously and sequentially, enabling the extraction of individual sound sources from complex

audio mixtures. LVMs can also be applied to solve the ASS problem. For example, the

authors of [148] proposed to use factorized hidden Markov models (factorized HMMs)

[70]. The factorized HMMs is extended from an HMM with the purpose of disentangling

hidden states of different dynamics. It is therefore well-suited to tackle the ASS prob-

lem. Another notable statistical approach that has been very popular for SC-ASS is based

on non-negative matrix factorization (NMF) [52]. In this approach, the NMF model is

used to decompose the power spectrogram of audio signals into low-dimensional spectral

power patterns modulated along time by a coefficient called temporal activation. To apply

the NMF model for ASS, the process begins by fitting the NMF model individually on

a set of single-source datasets to derive a dictionary of spectral patterns for each source.

Subsequently, these patterns are gathered in a dictionary matrix that is kept fixed. Then

the NMF model is fitted to the mixture signal to separate. Identifying the spectral patterns

used in this decomposition and their corresponding temporal activations enables the ex-

traction of the separated signal. Many variants of this general principle have been applied

and have demonstrated success in SC-ASS [149, 112, 113], as well as in multi-channel

ASS [147].

Much like in other domains, the evolution of deep learning has significantly trans-

formed research in ASS. Approaches based on deep learning formulate ASS as a super-

vised learning problem, most of which aim at learning the separation masks by training

the model on a large dataset (of aligned individual source signals and mixtures of them).

Various kinds of DNN architectures, input acoustic features, and training targets have

been explored [217, 84, 229]. A remarkable progress made by [130, 131] proposes to

train an end-to-end deep learning framework directly in the time domain. This approach

overcame the subopitmality of approaches based on time-frequency representations by

inherently leveraging the phase information, and demonstrated to surpass several ideal

time-frequency magnitude masks such as the oracle IBM and oracle Wiener filter mask.

Based on the signal embedding architecture of [131], many well-designed and more pow-

69

erful models employing RNNs and Transformers have been proposed [199, 129, 191].

Supervised ASS methods have made substantial advancements and achieved remark-

able success. However, a key limitation of supervised approaches lies in their heavy

reliance on a substantial amount of paired and aligned mixture and individual source data

for training. In practice, it is difficult to obtain such pairs in a real acoustic environment

with noise and reverberations. Typically, supervised methods are designed from synthetic

mixtures by simply adding up the isolated clean source signals (and possibly the noise).

This can limit the model’s performance in scenarios involving noise and reverberations.

In contrast, unsupervised or semi-supervised approaches might offer better generalization

capabilities. However, beyond traditional unsupervised statistical signal processing ap-

proaches, exploration of deep learning-based unsupervised methods has been limited. A

remarkable example is the work presented in [220], which introduces a mixture invariant

training framework (MixIT). MixIT takes a mixture of mixtures as input and separates

it into a variable number of latent sources. These estimated separation sources are then

remixed to approximate the original mixtures. This architecture can be trained in either

semi-supervised or unsupervised modes. In this thesis, we explore a weakly supervised

SC-ASS method, which involves pretraining DVAE models on each single source data

and solve the source separation problem within a complete DPGM framework. This work

will be presented in Chapter 5.

2.5.3 SPEECH ENHANCEMENT

Speech enhancement, although closely related to the ASS task discussed in the previous

subsection, concentrates on recovering the clean speech signal from a noisy audio record-

ing [13, 125]. In ASS, the interferences are competing audio sources, that can be them-

selves of interest, whereas in speech enhancement, the interference is generally consid-

ered as a ‘global’ background noise (hubbub), that we simply want to remove. The deep

learning based methods outlined earlier for SC-ASS can be more or less easily adapted

to address the speech enhancement problem by treating clean speech and noise as two

audio sources. And similarly to the supervised SC-ASS methods, supervised approaches

70 Chapter 2: Methodological Background

to speech enhacement are powerful and can obtain impressive results. However, they also

confront challenges in generalizing across diverse noise types and acoustic conditions not

encountered during training. Recent research has explored a novel avenue that utilizes

deep probabilistic models to tackle this challenge. For instance, the works presented in

[154, 57, 58] propose to employ GANs to learn a conditional distribution, predicting the

clean speech signal given the noisy speech. Another type of method proposes to use dif-

fusion models for speech enhancement [127, 218, 170]. Specifically, a diffusion model is

used to transform a clean signal into a noisy one by gradually adding small-step Gaussian

noise (see Section 2.1). Subsequently, speech enhancement is accomplished by applying

the inverse diffusion process, conditioned on the input noisy speech signal. DPGMs have

shown better generalization abilities compared to methods based on direct noisy-to-clean

mapping. Nevertheless, these approaches remain supervised and demand a large amount

of paired clean-noisy data for training, which, again, is challenging to obtain in real-life

scenarios.

To overcome the limitations of supervised methods, approaches using non-parallel

clean-noisy data have been investigated. Concretely, three types of methods have been

developed: those employing only clean speech data [9, 117, 22], those relying solely on

noisy speech data [2, 103, 61, 59] and those utilizing non-paired clean-noisy speech data

[223, 231]. A representative solution of the first type can be found in [9]. This work

proposes to first learn a prior distribution over clean speech by pre-training a DPGM, here

a VAE, on a clean speech dataset. Then, at test time, the learned VAE model is combined

with a low-rank NMF-based noise model to infer the variances of speech and noise, and

finally build a Wiener filter for speech enhancement. Methods of the second type em-

ploy diverse model training strategies. In [2] and [103], the denoising model is trained

to map two different noisy versions of the same clean speech signal. The motivation be-

hind this approach lies in the assumption that, when the noises introduced to the input

and target noisy speech signals are zero-mean and uncorrelated, deep neural networks are

able to learn an averaged denoised representation of the signal. The approach presented

in [61] involves corrupting noisy speech signals by introducing additive noise. The model

71

is trained to reconstruct the original noisy speech from its corrupted version. During the

test, the trained model is expected to recover the clean speech signal from a noisy speech

input. Though we cannot find rigorous theoretical arguments to support this training strat-

egy, it has been shown to achieve good performance in practice. The model proposed in

[59] is an unsupervised extension of the supervised MetricGAN method [57, 58]. The

MetricGAN method proposes to train the discriminator of the GAN model to mimic the

behavior of the target evaluation function. In [59], the supervised evaluation metric (e.g.,

PESQ [172] utilized in the MetricGAN model) is replaced with an unsupervised evalu-

ation metric, DNSMOS [164]. This adjustment eliminates the requirement for ground

truth clean speech data for training. Finally, methods of the third type are typically based

on the cycle-consistent generative adversarial network (CycleGAN) [240] architecture.

These models usually employ two or more generators and discriminators to learn the cy-

cle consistency between clean and noisy speech signals. In this thesis, we investigate

a speech enhancement method of the first type, which entails first pre-training a DVAE

model on clean speech signal, followed by integrating this pre-trained DVAE model with

another DPGM-based noise model for speech enhancement. This work will be presented

in Chapter 6.

72 Chapter 2: Methodological Background

CHAPTER 3

MIXTURE OF DVAES FOR

MULTI-SOURCE TRAJECTORY

MODELING AND SEPARATION

I basically know of two principles for

treating complicated systems in simple

ways: the first is the principle of modularity

and the second is the principle of

abstraction.

— Michael I. Jordan

73

74 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

This chapter is based on the following publication:

Xiaoyu Lin, Laurent Girin, and Xavier Alameda-Pineda. “Mixture of dynamical varia-

tional autoencoders for multi-source trajectory modeling and separation.” In Transactions

on Machine Learning Research, 2023.

3.1 A DPGM FOR MULTI-SOURCE DATA

All the DPGMs discussed in Section 2.2 have been used to model the distribution of

single-source data, the source being either static and having several possible states (in the

case of mixture models) or sequential with different types of underlying dynamics (e.g.,

locally linear). In real-life scenarios, we often encounter situations where a number of

sequential source signals appear concurrently in a natural scene for a certain period of

time and are observed jointly. Each underlying source can have its own dynamics, and

the problem is to obtain an estimation of the content and/or the position along time of

each source separately, which includes consistently recovering the identity of each source

over time. In short, we want to estimate and separate each source’s trajectory from a set

of mixed-up observations. For instance, in the context of multi-object tracking (MOT) as

discussed in Section 2.5.1, several moving targets are observed concurrently, and our aim

is to recover the trajectories of each object. Another scenario is the single-channel audio

source separation (SC-ASS) problem, as discussed in Section 2.5.2, where a mixture of

audio signals is recorded, and we would like to separate each of the audio sources.

In this chapter, we propose to tackle this problem within a DPGM framework, with a

model combining the following two bricks: (a) a DPGM for modeling the dynamics of

each source independently; in this work, we propose to use a model from the DVAE fam-

ily (presented in Section 2.2.2) to model each individual source. The DVAE-generated

random vector represents the source vector, i.e. the source content/position that we want

to track over time, and the latent random vector represents the underlying (continuous)

hidden state/factor that governs the source dynamics; (b) A discrete latent assignment

variable which assigns each observation in the set of (mixed-up) observations to a source.

75

We name the resulting model as Multi-Source Mixture of DVAEs (MixDVAE). In addi-

tion to the MixDVAE model, we propose a multi-source trajectory estimation algorithm

(i.e., a solution to the MixDVAE model). Importantly, this estimation method does not

require a massive multi-source annotated dataset for model training. Instead, we first

pre-train the DVAE model on an unlabeled (synthetic or natural) single-source trajectory

dataset, to capture the dynamics of an individual source type. Afterwards, the pre-trained

DVAE is plugged into the MixDVAE model together with the observation-to-source as-

signment latent variable to solve the problem for each multi-source test data sequence to

process. For each test data sequence, the (approximate) posterior distributions of both

the observation-to-source assignment variable and the source vector of each source are

derived using the VI methodology (presented in Section 2.3.2) – more specifically, we

propose a VEM algorithm [100, 24, 213].

The proposed model and method are versatile in essence. They can be easily adapted

and applied to a variety of estimation problems with multiple dynamical sources with dif-

ferent configurations. For example, if all sources are assumed to have similar dynamics,

a single DVAE model can be used to model all sources (more specifically, a different in-

stance of the same DVAE model can be used for each source) and only one pre-training

is made on a single single-source dataset. If different types of sources are considered,

with different dynamics, one can use different instances of the same DVAE model, but

pre-trained on different single-source datasets, or one can use (different instances of) dif-

ferent DVAE models, also pre-trained on different single-source datasets. In any case,

as stated above, there is no need for a massive dataset containing annotated mixtures of

simultaneous sources, as would be the case with a fully-supervised approach. Labeled

multi-source datasets must be much larger than single-source datasets, since the mix-

ture process intrinsically multiplies the content diversity, and thus can be very costly and

difficult to obtain. Therefore, our method can be considered as data-frugal and weakly su-

pervised compared to a fully-supervised method. One limitation of the proposed model,

though, is that the VEM algorithm applied at test time is relatively costly in computation

(this point is investigated in the experimental part of our study). Another limitation is

76 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

the fact that all sources are assumed to behave independently. In other words, the pro-

posed MixDVAE does not explicitly model the possible interactions between the different

sources. This is planned for future work.

In this PhD work, in addition to the methodological developments on the MixDVAE

model and solution, which will be the core of the present chapter, we illustrate the versa-

tility of MixDVAE by applying it to two notably different tasks, in computer vision and

in audio processing, namely the MOT and SC-ASS tasks that have been introduced in

Sections 2.5.1 and 2.5.2, respectively, and that we have mentioned again at the beginning

of this chapter. The application of MixDVAE to the MOT problem will be presented in

detail in Chapter 4 and the application to the SC-ASS problem will be presented in detail

in Chapter 5. In each case, we will report and discuss corresponding experimental results.

3.2 MIXDVAE MODEL

3.2.1 PROBLEM FORMULATION AND NOTATIONS

Let us consider a sequence containing N sources or targets that we observe over time. Let

n ∈ {1, ..., N} denote the source index and let stn ∈ RS be here the true (unknown) n-th

source vector at time frame t. At every time frame t, we gather Kt observations, and this

number can vary over time. We denote by otk ∈ RO, k ∈ {1, ..., Kt}, the k-th observation

at frame t. The problem tackled in this paper consists in estimating the sequence of hidden

source vectors s1:T,n = {stn}Tt=1, for each source n, from the complete set of observations

o1:T,1:Kt = {otk}T,Kt

t=1,k=1.

To solve this problem, we define two additional sets of latent variables. First, for each

source n at time frame t, we define a latent variable ztn ∈ RL associated with stn through

a DVAE model. This DVAE model, which might be identical for all sources or not, is

used to model the dynamics of each individual source and is plugged into the proposed

probabilistic MixDVAE model. Second, for each observation otk, we define a discrete

observation-to-source assignment variable wtk taking its value in {1, ..., N}. wtk = n

means that observation k at time frame t is assigned to/was generated by source n. This

results in per-source sequences of assigned observations.

77

Table 3.1: Summary of the variable notations.

Variable notation Definition

T , t ∈ {1, . . . , T} Sequence length and frame index
N , n ∈ {1, . . . , N} Total number of sources and source index
Kt, k ∈ {1, . . . , Kt} Number of observations at t, and obs. index
stn ∈ RS True position/content of source n at time t
ztn ∈ RL Latent variable of source n at time t
otk ∈ RO Observation k at time t
wtk ∈ {1, . . . , N} Assignment variable of observation k at

time t
s:,n = s1:T,n Source vector sequence for source n
st,: = st,1:N Set of all source vectors at time t
s = s1:T,1:N Set of all source vectors
z:,n, zt,:, z Analogous for the latent variable
o = o1:T,1:Kt Set of all observations
w = w1:T,1:Kt Set of all assignment variables

Hereinafter, to simplify the notations, we use “:” as a shortcut subscript for the set of

all values of the corresponding index. For example, s:,n = s1:T,n is the complete trajectory

of source n and st,: = st,1:N is the set of all source vectors at time frame t. All notations

are summarized in Table 3.1.

3.2.2 GENERAL PRINCIPLE OF THE PROPOSED MODEL AND SOLUTION

The general methodology of MixDVAE is to define a parametric joint distribution of all

variables pθ(o, s, z,w), then estimate its parameters θ and (an approximation of) the cor-

responding posterior distribution pθ(s, z,w|o), from which we can deduce an estimate of

s1:T,n for each source n. The proposed MixDVAE generative model pθ(o, s, z,w) is pre-

sented in Section 3.2.3. As briefly stated above, it integrates the DVAE generative model

defined by Equations (2.34)–(2.36) for modeling the sources dynamics and does not use

any human-annotated data for training. As is usually the case in (D)VAE-based genera-

tive models, both the exact posterior distribution pθ(s, z,w|o) and the marginalization of

the joint distribution pθ(o, s, z,w) w.r.t. the latent variables are analytically intractable.

Therefore we cannot directly use an exact EM algorithm and we resort to VI. We propose

the following strategy, inspired by the structured mean-field method that we summarized

78 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

Figure 3.1: Graphical representation of the proposed MixDVAE model.

in Section 2.3.4, with h being here equal to {s, z,w}. In Section 3.2.4, we define an ap-

proximate posterior distribution qϕ(s, z,w|o) that partially factorizes over {s, z,w}. Just

like the proposed MixDVAE generative model includes the DVAE generative model, the

approximate posterior distribution includes the DVAE inference model as one of the fac-

tors. This factorization makes possible the derivation of a model solution in the form of a

VEM algorithm, as detailed in Section 3.3.

3.2.3 GENERATIVE MODEL

Let us now specify the joint distribution of observed and latent variables pθ(o,w, s, z).

We assume that the observation variable o only depends on w and s, while the assignment

variable w is a priori independent of the other variables. The graphical representation of

MixDVAE is shown in Fig. 3.1. Applying the chain rule and these conditional dependency

assumptions, the joint distribution can be factorised as follows:

pθ(o,w, s, z) = pθo(o|w, s)pθw(w)pθsz(s, z). (3.1)

Observation model. We assume that the observations are conditionally independent

through time and independent of each other, that is to say, at any time frame t, the ob-

servation otk only depends on its corresponding assignment wtk and source vector at the

79

same time frame. The observation model pθo(o|w, s) can thus be factorised as:1

pθo(o|w, s) =
T∏
t=1

Kt∏
k=1

pθo(otk|wtk, st,:). (3.2)

Given the value of the assignment variable, the distribution p(otk|wtk, st,:) is modeled by

a Gaussian distribution:

pθo(otk|wtk = n, stn) = N (otk; stn,Φtk). (3.3)

This equation models only the observation noise via the covariance Φtk ∈ RO×O and thus

assumes that the assigned observation lies close to the true source vector.2

Assignment model. Similarly, we assume that, a priori, the assignment variables are

independent across time and observations:

pθw(w) =
T∏
t=1

Kt∏
k=1

pθw(wtk). (3.4)

For each time frame t and each observation k, the assignment variable wtk is assumed to

follow a uniform prior distribution:

pθw(wtk) =
1

N
. (3.5)

Dynamical model. Finally, pθsz(s, z) is modeled with a DVAE. The different sources

are assumed to be independent of each other. This implies that in the present work we

do not consider possible interactions among sources. More complex dynamical models

including source interaction are beyond the scope of this study. With this assumption, the

joint distribution of all source vectors and corresponding latent variable pθsz(s, z) can be

1In this equation, we use st,: and not stn, since the value of wtk is not specified.
2For simplicity of presentation, we state the case in which the observation and source

vector dimensions are the same, i.e. O = S. In a more general case where O ̸= S, we can
consider the use of a projection matrix Pk ∈ RO×S and define pθo(otk|wtk = n, stn) =
N (otk;Pkstn,Φtk). Again, for simplicity, we consider Pk = I in the rest of the paper.
All derivations and results are generalizable to Pk ̸= I.

80 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

factorized across sources as:

pθsz(s, z) =
N∏

n=1

pθsz(s:,n, z:,n), (3.6)

where pθsz(s:,n, z:,n) is the DVAE model defined in Equation 2.34–Equation 2.36 and

applied to s:,n and z:,n (defining pt,n = {s1:t−1,n, z1:t−1,n}).3 As mentioned before, the

DVAE model can be either the same architecture for all sources, pre-trained on a unique

single-source dataset, or the same architecture but pre-trained on different single-source

datasets for different sources, or completely different architectures for each source.

Overall, the parameters in the generative model to be estimated are θ = {θo =

{Φtk}T,Kt

t,k=1, θs, θz} (note that θw = ∅).

3.2.4 INFERENCE MODEL

The exact posterior distribution corresponding to the MixDVAE generative model de-

scribed in Section 3.2.3 is neither analytically nor computationally tractable. There-

fore, we propose the following factorized approximation that leads to a computationally

tractable inference model:

qϕ(s, z,w|o) = qϕw(w|o)qϕz(z|s)qϕs(s|o), (3.7)

where qϕz(z|s) corresponds to the inference model of the DVAE and the optimal distribu-

tions qϕs(s|o) and qϕw(w|o) are derived below in the E-steps of the MixDVAE algorithm.

The factorization Equation 3.7 is inspired by the structured mean-field method [153] that

we summarized in Section 2.3.4, since we break the posterior dependency between w and

{s, z}. However, we keep the dependency between s and z at inference time since it is the

essence of the DVAE. In addition, we assume that the posterior distribution of the DVAE

3Here we denote the DVAE parameters by θsz instead of θ, to differentiate the DVAE
parameters from the other parameters.

81

latent variable is independent for each source, so that we have:

qϕz(z|s) =
N∏

n=1

qϕz(z:,n|s:,n), (3.8)

where qϕz(z:,n|s:,n) is given by Equation 2.37 and Equation 2.38 applied to {z:,n, s:,n}.

This is coherent with the generative model, where we assumed that the dynamics of the

various sources are independent of each other.

3.3 MIXDVAE SOLUTION: A VARIATIONAL EXPECTATION-MAXIMIZATION

ALGORITHM

Let us now present the proposed algorithm for jointly deriving the terms of the inference

model (other than the DVAE terms) and estimating the parameters of the complete MixD-

VAE model, based on the maximization of the corresponding ELBO. The inference is

done directly on each multi-source test sequence to process and does not require previous

supervised training with a labeled multi-source dataset. It only requires to pre-train the

DVAE model on synthetic or natural single-source sequences.

As discussed in Section 2.3.4 and Section 2.3.5, in many latent variable models, the op-

timization of the ELBO is done either following the structured mean-field method Equa-

tion 2.53 or using gradient based methods as in (D)VAEs. In our case, we cannot directly

use the generic structured mean-field inference procedure, since the proposed approxima-

tion Equation 3.7 does not factorize completely in a set of disjoint latent variables (e.g.,

qϕz(z|s) is conditioned on s). Alternatively, one could resort to purely amortized inference

and conceive a deep encoder that approximates the distributions in Equation 3.7, leading

to a looser approximation bound. We propose a strategy that is a middle ground between

these two worlds. We use the structured mean-field principles that provide a tighter bound

since they do not impose a distribution family for qϕw and qϕs , and we use the philosophy

of amortized inference for qϕz so as to exploit the pre-trained DVAE encoder.

To do so, we have to go back to the fundamentals of VI and iteratively maximize the

82 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

MixDVAE model ELBO defined by:

L(θ, ϕ;o) = Eqϕ(s,z,w|o)[log pθ(o, s, z,w)− log qϕ(s, z,w|o)]. (3.9)

By injecting Equation 3.1 and Equation 3.7 into Equation 3.9, we can develop L(θ, ϕ;o)

as follows:

L(θ, ϕ;o) = Eqϕw (w|o)qϕs (s|o)
[
log pθo(o|w, s)

]
+ Eqϕw (w|o)

[
log pθw(w)− log qϕw(w|o)

]
+ Eqϕs (s|o)

[
Eqϕz (z|s)

[
log pθsz(s, z)− log qϕz(z|s)

]]
− Eqϕs (s|o)

[
log qϕs(s|o)

]
.

(3.10)

The ELBO maximization is done by alternatively and iteratively maximizing the different

terms corresponding to the various posterior and generative distributions. In our case, we

obtain a series of variational E and M steps. While the E steps associated to qϕw and qϕs

follow the structured mean-field principle, the E step associated to qϕz is based on the

principle of amortized inference commonly used in (D)VAEs.

3.3.1 E-S STEP

We first consider the computation of the optimal posterior distribution qϕs(s|o). To this

aim, we first select the terms in (3.10) that depend on s, the other terms being here con-

sidered as a constant:

Ls(θ, ϕ;o) = Eqϕs (s|o)

[
Eqϕw (w|o)

[
log pθo(o|w, s)

]
+ Eqϕz (z|s)

[
log pθsz(s, z)− log qϕz(z|s)

]
− log qϕs(s|o)

]
. (3.11)

Let us define:

p̃(s|o) = C ′ exp
(

Eqϕw (w|o)
[
log pθo(o|w, s)

]
+ Eqϕz (z|s)

[
log pθsz(s, z)− log qϕz(z|s)

])
,

(3.12)

83

where C ′ > 0 is the appropriate normalisation constant. Equation 3.11 rewrites:

Ls(θ, ϕ;o) = −DKL

(
qϕs(s|o) ∥ p̃(s|o)

)
+ C, (3.13)

where DKL(·|·) denotes the KL divergence. Therefore, the optimal distribution is the one

minimising the above KL divergence:

qϕs(s|o) = p̃(s|o) ∝ exp
(

Eqϕw (w|o)
[
log pθo(o|w, s)

]
+ Eqϕz (z|s)

[
log pθsz(s, z)− log qϕz(z|s)

])
.

(3.14)

Since for any pair (t, k), the assignment variable wtk follows a discrete posterior distri-

bution, we can denote the corresponding probability values by ηtkn = qϕw(wtk = n|otk).

These values will be computed in the E-W step below. The expectation with respect to

qϕw(w|o) in Equation 3.14 can be calculated using these values. However, the expec-

tation with respect to qϕz(z|s) cannot be calculated in closed form. As usually done in

the (D)VAE methodology, it is thus replaced by a Monte Carlo estimate using sampled

sequences drawn from the DVAE inference model at the previous iteration (this point will

be specified in Section 3.3.5). Replacing the distributions in Equation 3.14 with Equa-

tion 3.2, Equation 3.6, and Equation 3.8, and calculating the expectations with respect to

qϕw(w|o) and qϕz(z|s), we find that qϕs(s|o) factorizes with respect to n as follows:

qϕs(s|o) =
N∏

n=1

qϕs(s:,n|o). (3.15)

Each of these factors corresponds to the posterior distribution of the n-th source vector.

Given Equation 3.14 and the DVAE generative and inference models, we see that at a

given time t, the distribution over stn has non-linear dependencies w.r.t. the previous and

current DVAE latent variables z1:t,n and the previous source vectors s1:t−1,n. These non-

linear dependencies impede to obtain an efficient closed-form solution. We resort to point

sample estimates obtained using samples of z1:t,n and of s1:t−1,n, at the current iteration,

denoted z
(i)
1:t,n and s

(i)
1:t−1,n. Using these samples, the posterior distribution is approximated

84 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

with (details can be found in Appendix A.1.1):

qϕs(s:,n|o) ≈
T∏
t=1

qϕs(stn|s
(i)
1:t−1,n, z

(i)
1:t,n,o), (3.16)

where each term of the product is shown to be a Gaussian:

qϕs(stn|s
(i)
1:t−1,n, z

(i)
1:t,n,o) = N (stn;mtn,Vtn), (3.17)

with covariance matrix and mean vector given by:

Vtn =
(Kt∑

k=1

ηtknΦ
−1
tk + diag(v(i)

θs,tn
)−1

)−1

, (3.18)

mtn = Vtn

(Kt∑
k=1

ηtknΦ
−1
tk otk + diag(v(i)

θs,tn
)−1µ

(i)
θs,tn

)
, (3.19)

where v(i)
θs,tn

and µ
(i)
θs,tn

are simplified notations for vθs(s
(i)
1:t−1,n, z

(i)
1:t,n) and µθs(s

(i)
1:t−1,n, z

(i)
1:t,n),

respectively denoting the variance and mean vector provided by the DVAE decoder net-

work for source n at time frame t. As we have to sample both s:,n and z:,n, we need

to pay attention to the sampling order. This will be discussed in detail in Section 3.3.5.

Importantly, in practice, mtn is used as the estimate of stn.

Equation 3.19 shows that the estimated n-th source vector is obtained by combining

the observations otk and the mean source vector µ(i)
θs,tn

predicted by the DVAE generative

model. The balance between these two terms depends on the assignment variable ηtkn, the

observation model covariance matrix Φtk and the source variance predicted by the DVAE

generative model v(i)
θs,tn

. Ideally, the model should be able to appropriately balance these

two terms so as to optimally exploit both the observations and the DVAE predictions.

3.3.2 E-Z STEP

In the E-Z step, we consider the DVAE inference model qϕz(z|s), defined by Equation 3.8,

Equation 2.37 and Equation 2.38.

In Equation 3.10, the corresponding term is the third one, which we denote byLz(θs, θz, ϕz;o)

85

and which factorizes across sources as follows (see Appendix A.1.1):

Lz(θs, θz, ϕz;o) =
N∑

n=1

Lz,n(θs, θz, ϕz;o), (3.20)

with

Lz,n(θs, θz, ϕz;o) = Eqϕs (s:,n|o)

[
Eqϕz (z:,n|s:,n)

[
log pθsz(s:,n, z:,n)

]
− Eqϕz (z:,n|s:,n)

[
log qϕz(z:,n|s:,n)

]]
. (3.21)

Inside the expectation Eqϕs (s:,n|o)[·], we recognize the DVAE ELBO, which is defined as:

Lz,n(θs, θz, ϕz; s1:T) = Eqϕz (z1:T |s1:T)

[
log pθsz(s1:T , z1:T)− log qϕz(z1:T |s1:T)

]
, (3.22)

applied to source n. This suggests the following strategy. Previously to and independently

of the MixDVAE algorithm, we pre-train the DVAE model on a dataset of synthetic or

natural unlabeled single-source sequences.4 This is done only once, and the resulting

DVAE is then plugged into the MixDVAE algorithm to process multi-source sequences.

This provides the E-Z step with very good initial values of the DVAE parameters θs, θz and

ϕz. As for the following of the E-Z step, the expectation over qϕs(s:,n|o) in Equation 3.21

is not analytically tractable. A Monte Carlo estimate is thus used instead, using samples of

both z and s, similarly to what was done in the E-S step. Finally, SGD is used to maximize

(the Monte Carlo estimate of) Lz(θs, θz, ϕz;o), jointly updating θs, θz and ϕz; that is, we

fine-tune the DVAE model within the MixDVAE algorithm, using the observations o.

Note that in our experiments presented in the two next chapters, we also consider the case

where we neutralize the fine-tuning, i.e. we remove the E-Z step and use the DVAE model

as provided by the pre-training phase.

4When we apply MixDVAE to MOT and SC-ASS in the next chapters, this pre-
training will be detailed in Sections 4.3 and 5.3, respectively.

86 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

3.3.3 E-W STEP

Thanks to the separation of w from the two other latent variables in Equation 3.7, the

posterior distribution qϕw(w|o) can be calculated in closed form by directly applying the

optimal structured mean-field update equation Equation 2.53 to our model. It can be

shown that this is equivalent to maximizing Equation 3.10 w.r.t. qϕw(w|o). We obtain

(see Appendix A.1.1 for details):

qϕw(w|o) ∝
T∏
t=1

Kt∏
k=1

qϕw(wtk|o), (3.23)

with

qϕw(wtk = n|o) = ηtkn =
βtkn∑N
i=1 βtki

, (3.24)

where

βtkn = N (otk;mtn,Φtk) exp
(
− 1

2
Tr
(
Φ−1

tk Vtn

))
. (3.25)

The parameters mtn and Vtn in the above equation have been defined in Equation 3.19

and Equation 3.18, respectively.

3.3.4 M STEP

As discussed in Section 2.3.2, the maximization step generally consists in estimating the

parameters θ of the generative model by maximizing the ELBO over θ. We recall that

θ = {θo = {Φtk}T,Kt

t,k=1, θs, θz}. In this work, the parameters of the DVAE decoder θs and

θz are first estimated (offline) during the pre-training of the DVAE and then fine-tuned

in the E-Z step in an amortized way, all this jointly with the parameters of the encoder

ϕz. Therefore, in the M-step, we only need to estimate the observation model covariance

matrices θo = {Φtk}T,Kt

t,k=1. In Equation 3.10, only the first term depends on θo. Setting its

derivative with respect to Φtk to zero, we obtain (see Appendix A.1.1 for details):

Φtk =
N∑

n=1

ηtkn

(
(otk −mtn)(otk −mtn)

T +Vtn

)
. (3.26)

87

In practice, it is difficult to obtain a reliable estimation using only a single observation.

We address this issue in Sections 4.4.3 and 5.4.3.

3.3.5 MIXDVAE COMPLETE ALGORITHM

As already mentioned in Section 3.3.1, we must pay attention to the sampling order of s

and z when running the iterations of the E-S and E-Z steps. As indicated in the pseudo-

code of Algorithm 1, in practice, the E-S and E-Z steps are processed jointly. We start

with the initial source vectors sequence s(0)
1:T,1:N and initial mean source vectors sequence

m(0)
1:T,1:N . At any iteration i of the E-Z and E-S steps, for each source n and each time

frame t, we sample in the following order:

1. Compute the parameters µ(i)
ϕz,tn

and v
(i)
ϕz,tn

5 of the posterior distribution of zt using the

DVAE encoder network with inputs s(i−1)
1:T,n sampled at the previous iteration and z

(i)
1:t−1,n

sampled at the current iteration. Then, sample z
(i)
tn from qϕz(ztn|s

(i−1)
1:T,n , z

(i)
1:t−1,n).

2. Compute the parameters µ(i)
θz,tn

and v
(i)
θz,tn

6 of the generative distribution of zt using the

corresponding DVAE decoder network with inputs s
(i)
1:t−1,n and z

(i)
1:t−1,n, both sampled

at the current iteration.

3. Compute the parameters µ(i)
θs,tn

and v
(i)
θs,tn

of the generative distribution of st using the

corresponding DVAE decoder network with inputs s(i)1:t−1,n and z
(i)
1:t,n, both sampled at

the current iteration. Compute the parameters m(i)
tn and V

(i)
tn of the posterior distribution

of st with Equation 3.18 and Equation 3.19, and sample s
(i)
tn from it.

Note that with the above sampling order, the Monte Carlo estimate of the ELBO term

maximized in the E-Z step Equation 3.21 is given by (for source n):

L̂z,n(θs, θz, ϕz;o) =
T∑
t=1

log pθs(s
(i)
tn |s

(i)
1:t−1,n, z

(i)
1:t,n)

−
T∑
t=1

DKL

(
qϕz(ztn|s

(i−1)
1:T,n , z

(i)
1:t−1,n)||pθz(ztn|s

(i)
1:t−1,n, z

(i)
1:t−1,n)

)
. (3.27)

5µ
(i)
ϕz,tn

and v
(i)
ϕz,tn

are shortcuts for µϕz

(
s
(i−1)
1:T,n , z

(i)
1:t−1,n

)
and vϕz

(
s
(i−1)
1:T,n , z

(i)
1:t−1,n

)
re-

spectively.
6Analogous definitions hold.

88 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

Algorithm 1 MixDVAE algorithm

Input:
Observation vectors o = o1:T,1:Kt;

Output:
Parameters of qϕs(s) : {m(I)

tn ,V
(I)
tn }

T,N
t,n=1 (the estimated n-th source vector at time

frame t is mtn);
Values of the assignment variable {η(I)tkn}

T,N,Kt

t,n,k=1;
1: Initialization
2: See Sections 4.4.2 and 5.4.2
3: for i← 1 to I do
4: E-W Step
5: for n← 1 to N do
6: for t← 1 to T do
7: for k ← 1 to Kt do
8: Compute η

(i)
tkn using (3.24) and (3.25);

9: end for
10: end for
11: end for
12: E-Z and E-S Step
13: for n← 1 to N do
14: for t← 1 to T do
15: Encoder;
16: Compute µ

(i)
ϕz,tn

, v(i)
ϕz,tn

with input s(i−1)
1:T,n and z

(i)
1:t−1,n;

17: Sample z
(i)
tn from qϕz(ztn|s

(i−1)
1:T,n , z

(i)
1:t−1,n) = N

(
ztn;µ

(i)
ϕz,tn

, diag(v(i)
ϕz,tn

)
)
;

18: Decoder;
19: Compute µ

(i)
θz,tn

and v
(i)
θz,tn

with input s(i)1:t−1,n and z
(i)
1:t−1,n;

20: Compute µ
(i)
θs,tn

and v
(i)
θs,tn

with input s(i)1:t−1,n and z
(i)
1:t,n;

21: E-S update;
22: Compute m

(i)
tn , V(i)

tn using (3.19) and (3.18);
23: Sample s

(i)
tn from N (stn;m

(i)
tn ,V

(i)
tn);

24: end for
25: E-Z update;
26: Compute L̂n(θs, θz, ϕz;o) using (3.27);
27: end for
28: Compute L̂(θs, θz, ϕz;o) =

∑N
n=1 L̂n(θs, θz, ϕz;o);

29: Fine-tune the DVAE parameters {θs, θz, ϕz} by applying SGD on L̂(θs, θz, ϕz;o);
30: M Step
31: Compute Φ

(i)
tk using (3.26) or following Sections 4.4.3 and 5.4.3;

32: end for

89

Observations
at frame t

ot,1:Kt

Source vectors
estimated

 at iteration i − 1
s(i−1)

1:T,1:N

DVAE predicted
mean and

variance vectors

Assignment
variable η(i)

tkn

Estimated source
mean vector and

covariance matrix
, m(i)

t,1:N V(i)
t,1:N

E-Z Step
Update ϕz

MixDVAE
algorithm

Update
 , θz θs

E-S Step

E-W StepUpdate
Φ(i)

tk

M Step

ϕ(i)
z θ(i)

sz

ℝO

T frames

ℝS

DVAE model Offline
pre-training

ϕz θsz

T frames

ℝS

T frames

ℝS

ℝS

 μθs
(s(i−1)

1:t−1,1:N, z1:t,1:N)
νθs

(s(i−1)
1:t−1,1:N, z1:t,1:N)

Figure 3.2: Overview of the proposed MixDVAE algorithm at a given time frame t. The
DVAE model is pretrained offline using a (synthetic or natural) single-source dataset. It
takes as input the sequence of source vectors, encodes them into a sequence of latent
vectors, which are then decoded into the reconstructed sequence of source vectors. For
a given time frame t, the MixDVAE algorithm takes as input the observations at time t
as well as the mean and variance vectors estimated by the DVAE model. By iterating the
E-S, E-Z, E-W and M steps, we obtain estimates of the assignment variable and of each
source vector.

The whole MixDVAE algorithm, taking into account these practical aspects, is summa-

rized in the form of pseudo-code in Algorithm 1.7 In addition, Fig. 3.2 shows a schematic

overview of the algorithm.

3.3.6 CHOICE OF THE DVAE MODEL

We recall that the DVAE is a general class of models that differ by adopting different con-

ditional independence assumptions for the generative distributions in the right-hand-side

of Equation 2.34. In [71], seven DVAE models from the literature have been extensively

discussed, and six of them have been benchmarked on the analysis-resynthesis task (on

speech signals and 3D human motion data). We chose to use here the stochastic recurrent

neural network (SRNN) model initially proposed in [55], because it was shown in [71]

to provide a very good trade-off between model complexity and modeling power. The

7As illustrated in Sections 4.4.2 and 5.4.2, in practice, we can choose different VEM
step orders. Here we present the algorithm with the order E-S/E-Z Step, E-W Step and M
Step.

90 Chapter 3: Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation

probabilistic dependencies of the SRNN generative model are defined as follows:

pθsz(s1:T , z1:T) =
T∏
t=1

pθs(st|s1:t−1, zt)pθz(zt|s1:t−1, zt−1). (3.28)

To perform online estimation, we use the following causal SRNN inference model:

qϕz(z1:T |s1:T) =
T∏
t=1

qϕz(zt|s1:t, zt−1). (3.29)

The implementation details of the SRNN model can be found in Appendix A.1.2.

CHAPTER 4

APPLICATION OF MIXDVAE ON MOT

Knowledge is the beginning of practice;

doing is the completion of knowing.

知是行之始，行是知之成。

— Wang Yangming

91

92 Chapter 4: Application of MixDVAE on MOT

This chapter is based on the following publication:

Xiaoyu Lin, Laurent Girin, and Xavier Alameda-Pineda. “Mixture of dynamical varia-

tional autoencoders for multi-source trajectory modeling and separation.” In Transactions

on Machine Learning Research, 2023.

4.1 APPLICATION OF MIXDVAE ON MOT

In the previous chapter, we presented the general principles and solutions of MixDVAE .

In this chapter, we introduce the application of the MixDVAE model and the correspond-

ing algorithm to the MOT problem. This requires to first specify the data and model

configurations in this context.

As discussed in Section 2.5.1, a classical solution to the MOT problem is the ‘tracking-

by-detection’ paradigm. In this paradigm, a set of DBBs are given at each time step by

a front-end detection algorithm, each of them potentially corresponding to one of the tar-

gets. These DBBs are then used as the observations. In Chapter 4, we apply the MixDVAE

model to the MOT problem in this configuration (i.e., using the set of DBBs as observa-

tions). We do that in a simplified scenario where the number of objects is assumed known

and constant during the observation measurements. A complete and fully-operational

MOT system would require to include a module managing the ‘birth’ and ‘death’ of tar-

get tracks (i.e., objects disappearing of the scene and new objects appearing in the scene).

We do not address this problem since the purpose of this work is not to propose a fully-

operational MOT system but rather to focus on the problem of multi-source dynamics

modeling with DVAEs. It must be noted however that even if we assume that the actual

number of objects present in the scene is known and does not vary across the modeled

sequence, at any time step t, it is not necessarily equal to the number of DBBs, since

occlusions (leading to missed detections) may occur. We will see in our reported experi-

ments that MixDVAE is able to deal with these difficulties.

93

4.2 SETTING MIXDVAE IN THE MOT CONFIGURATION

As mentioned in Section 4.1, under the tracking-by-detection configuration, the objective

of the MOT task is to estimate the trajectories of moving objects from a set of given

DBBs. In this case, the source vector stn represents the position of object n at time

frame t, which is given in practice by the coordinates of the (top-left and bottom-right

points of the) “true” corresponding bounding box, i.e. stn = (sL
tn, s

T
tn, s

R
tn, s

B
tn) ∈ R4. The

observation vector otk = (oL
tk, o

T
tk, o

R
tk, o

B
tk) ∈ R4 contains the coordinates of the (top-left

and bottom-right points of the) k-th DBB at frame t. In a VAE or DVAE, the dimension

L of the latent vector ztn is usually smaller than the dimension of the observed vector, in

order to obtain a compact data representation. Since in the MOT task the data dimension

is already small (O = S = 4), we also set L = 4. The sequence of estimated source

position vectors is given directly by Equation 3.19, for n = 1 to N and t = 1 to T ,

directly forming source trajectories, with no further post-processing.

4.3 DVAE PRE-TRAINING

4.3.1 DATASET

We consider pedestrian tracking for the MOT task and assume that all the moving sources

have similar dynamical patterns. We thus pre-train a single DVAE model on a synthetic

single-source trajectory dataset. This dataset contains synthetic bounding box trajectories

in the form of T -frame sequences (T = 60) of 4D vectors {(xL
t , x

T
t , x

R
t , x

B
t)}Tt=1. These

trajectories are generated using piece-wise combinations of several elementary functions,

namely: static a(t) = a0, constant velocity a(t) = a1t+ a0, constant acceleration a(t) =

a2t
2 + a1t + a0, and sinusoidal (allowing for circular trajectories) a(t) = a sin(ωt +

ϕ0). The parameters a1, a2, ω, and ϕ0 are sampled from some pre-defined distributions,

whose parameters are estimated from the detections on the training subset of the MOT17

dataset [44], which is a widely-used pedestrian tracking dataset (rapidly described it in

the next subsection). The two remaining parameters, a0 and a, are set to the values that

ensure continuous trajectories. More details about the single-source synthetic trajectories

94 Chapter 4: Application of MixDVAE on MOT

generation can be found in Appendix A.2.2. Overall, we generated 12,105 sequences for

the training dataset and 3,052 sequences for the validation dataset.

4.3.2 TRAINING DETAILS

The SRNN model used in our experiments is an auto-regressive model, i.e., it uses the

past source vectors s1:t−1 to predict the current one st. In practice, the estimated past

vectors are used for this prediction, rather than the ground-truth past vectors. To make

the model robust to this problem, we trained the model in the scheduled sampling mode

[14]. This means that during training, we gradually replace the ground-truth past values

with the previously generated ones to predict the current value (see [71, Chapter 4] for a

discussion on this issue). The model was trained using the Adam optimizer [104] with

a learning rate set to 0.001 and a batch size set to 256. An early-stopping strategy was

adopted, with a patience of 50 epochs.

4.4 MIXDVAE EVALUATION SET-UP

4.4.1 DATASET

For the evaluation of the proposed MixDVAE algorithm, we used the training set of

MOT17. MOT17 contains pedestrian scenes filmed in different places such as in a shop-

ping mall or in a street, with static or moving cameras. The motion patterns of the pedes-

trians in these videos are quite diverse and challenging. The MOT17 training set contains

seven sequences with length varying from twenty seconds to one minute, with differ-

ent frame rates (14, 25, and 30 fps). The ground-truth bounding boxes are provided, as

well as the detection results obtained with three customized detectors, namely DPM [51],

Faster-RCNN [166], and SDP [226]. As briefly stated in the introduction, we focus our

study on modeling the source dynamics for multiple-source tasks. Therefore, we leave

aside the problem of appearing/disappearing sources (usually referred to as birth/death

processes) and consider a fixed number of N = 3 tracks. We have thus designed a new

dataset from the MOT17 training set, which we call the MOT17-3T dataset. The MOT17-

3T dataset uses the publicly-released DBBs of the MOT17 dataset. We split a complete

95

video sequence into subsequences of sequence length T . Three values of T are evaluated

in our experiments: 60, 120, and 300 frames (respectively corresponding to 2, 4, and 10

seconds at 30 fps). Each test sequence contains three source trajectories with possible

occlusions and detection absences, see an example in Fig. 4.1. More details on the de-

sign of the MOT17-3T dataset can be found in Appendix A.2.2. We have finally created

1,712, 1,161, and 1,137 3-source test sequences of length T = 60, 120, and 300 frames,

respectively. Notice that the pre-trained DVAE is not fine-tuned on these test sequences.

4.4.2 ALGORITHM INITIALIZATION

Before starting the iterations of the proposed VEM algorithm as described in Algorithm 1,

we need to initialize the values of several parameters and variables. Theoretically, there

is no preference in the order of the three E-steps. In practice, however, for initialization

convenience, we followed the order E-W Step, E-Z/E-S Step. Indeed, starting with E-W

Step requires the initialization of the mean vector and covariance matrix of the source

vector posterior distribution mtn,Vtn, the input vectors of the DVAE encoder s1:T,n and

the observation covariance matrices Φtk. For MOT, mtn can be easily initialised over a

short sequence by assuming that the source does not move too much. Indeed, the initial

values of mtn can be set to the value of the observed bounding box at the beginning of

the sequence m0n. While this strategy is very straightforward to implement, it is too

simple for many tracking scenarios, especially for long sequences. We thus propose to

split a long sequence into sub-sequences. For each sub-sequence, we initialise mtn to

the value at the beginning of the sub-sequence. After this initialisation, we run a few

iterations of the VEM algorithm over the sub-sequence, allowing us to have an estimate

of the source position at the end of the sub-sequence. This value is then used to provide

a constant initialisation for the next sub-sequence. At the end, all these initializations

are concatenated, providing a piece-wise constant initialization for mtn over the entire

long sequence. More implementation details, as well as the pseudo-code of this cascade

initialization strategy, are provided in Appendix A.2.1. The input vectors of the DVAE

encoder are initialized with the same values as the ones used for mtn.

96 Chapter 4: Application of MixDVAE on MOT

4.4.3 OBSERVATION COVARIANCE MATRIX

In our MOT experiments, we observed that the estimated values of both Φtk and vθs,tn

in Equation 3.19 increased very quickly with the VEM algorithm iterations. This caused

instability and unbalance between these two terms, which finally conducted the whole

model to diverge. To solve this problem, we set Φtk to a given fixed value, which is

constant on the whole analyzed T -frame sequence and not updated during the VEM iter-

ations. Specifically, for the MOT task, Φtk is set to a diagonal matrix, and the diagonal

entries are set to r2Φ
[
(oR

1k − oL
1k)

2, (oT
1k − oB

1k)
2, (oR

1k − oL
1k)

2, (oT
1k − oB

1k)
2
]
, where rΦ is a

factor lower than 1. In common terms, Φtk is set to a fraction of the (squared) size of the

corresponding observation at frame 1. The covariance matrices Vtn are initialized with

the same values as Φtk.

4.4.4 HYPERPARAMETERS

The VEM algorithm of MixDVAE has four hyperparameters to be set. The observation

covariance matrix ratio rΦ is set to 0.04, the initialization subsequence length J is set to

30, and the initialization iteration number I0 is set to 20. The MixDVAE algorithm itself

is run for I = 70 iterations, which was experimentally shown to lead to convergence.

4.4.5 BASELINES

We compare our model with two recent state-of-the-art probabilistic MOT methods: The

Autoregressive Tracklet Inpainting and Scoring for Tracking (ArTIST) model of [179]

and the Variational Kalman Filter (VKF) of [8]. In addition to that, in order to demon-

strate the advantage of using a DVAE model for modeling the dynamics of single-source

trajectories, we consider replacing the DVAE model with a simpler deep auto-regressive

(Deep AR) model. ArTIST is a supervised stochastic autoregressive model that learns the

discretized multi-modal distribution of human motion using annotated MOT sequences.

It can assign detections to tracks by scoring tracklet1 proposals with their likelihood. And

1A tracklet indicates a sequence of estimated position vectors consistent over time and
assigned to the same object.

97

it can also generate continuations of the source trajectories and inpaint those containing

missing detections. We have reused the trained models as well as the tracklet scoring

and inpainting code provided by the authors2 and reimplemented the object tracking part

according to the paper, as this part was not provided. Implementation details can be

found in Appendix A.2.3. Alike the proposed MixDVAE algorithm, the VKF algorithm

for MOT [8] is also based on the VI methodology to combine source position estimation

and detection-to-source assignment. However, a basic one-step linear dynamical model

is used in VKF instead of the DVAE model in the proposed MixDVAE algorithm. In

short, the dynamical model we use in VKF is pθs(st|st−1) =
∏N

n=1N (stn;Dst−1,n,Λtn),

where D is assumed to be the identity matrix and Λtn is estimated in the M step. Hence,

the VKF MOT algorithm is a combination of VI and Kalman filter update equations. In

[8], the method was proposed in an audiovisual set-up. The observations contain not

only the DBBs coordinates, but also appearance features and multichannel audio record-

ings. For a fair comparison with MixDVAE, we use here the same observations, i.e.,

we simplified VKF by using only the DBBs coordinates. For both ArTIST and VKF,

the tracked sequences are initialized using the DBBs at the first frame, as what we have

done for MixDVAE. For VKF, similarly to MixDVAE, we need to provide initial val-

ues for mtn and Vtn. For a fair comparison, we applied the same cascade initialization

as the one presented above, except that a linear dynamical model is used in place of

the DVAE to ensure the transition between two consecutive subsequences. The covari-

ance matrices Vtn are initialized with pre-defined values that stabilize the EM algorithm.

The covariance matrices Φtk are fixed to the same values as for MixDVAE. The covari-

ance matrices of the linear dynamical model (denoted Λtn in [8]) are initialized with the

same values as Vtn. Finally the simpler Deep AR baseline model is a deep generative

model without stochastic latent variables. In this baseline, the dynamical model becomes

pθs(st|st−1) =
∏N

n=1N (st,n;µθs(s1:t−1,n), diag(vθs(s1:t−1,n))). In practice, the Deep AR

model is implemented with an LSTM layer. The hidden dimension of the LSTM layer is

set to match that of the LSTM layers employed in the DVAE model, i.e. it is equal to 8.

2available at https://github.com/fatemeh-slh/ArTIST

98 Chapter 4: Application of MixDVAE on MOT

4.4.6 EVALUATION METRICS

We use the standard MOT metrics [17, 171] to evaluate the tracking performance of

MixDVAE and compare it to the baselines, namely: multi-object tracking accuracy (MOTA),

multi-object tracking precision (MOTP), identity F1 score (IDF1), number of identity

switches (IDS), mostly tracked (MT), mostly lost (ML), false positives (FP) and false

negatives (FN). The three test subsets contain a different number of test sequences, with

a different sequence length T . Therefore, for IDS, FP and FN, we report both the number

of occurrences and the corresponding percentage. Among them, MOTA is considered to

be the most representative metric. It is defined by aggregating the frame-wise versions of

the metrics FPt, FNt, and IDSt over frames:

MOTA = 1−
∑

t(FNt + FPt + IDSt)∑
t GTt

, (4.1)

where GTt denotes the number of ground-truth tracks at frame t. Higher MOTA values

imply less errors (in terms of FPs, FNs, and IDS), and hence better tracking performance.

MOTP defines the averaged overlap between all correctly matched sources and their cor-

responding ground truth. Higher MOTP implies more accurate position estimations. IDF1

is the ratio of correctly identified detections over the average number of ground-truth and

computed detections. IDS reflects the capability of the model to preserve the identity of

the tracked sources, especially in case of occlusion and track fragmentation. MT and ML

represent how much the trajectory is recovered by the tracking algorithm. A source track

is mostly tracked (resp. mostly lost) if it is covered by the tracker for at least 80% (resp.

not more than 20%) of its life span.

4.5 EXPERIMENTAL RESULTS

4.5.1 QUANTITATIVE ANALYSIS

We now present and discuss the tracking results obtained with the proposed MixDVAE

algorithm and compare them with those obtained with the baselines. In these experiments,

the value of the observation variance ratio rΦ is set to 0.04 and no fine-tuning is applied

99

Table 4.1: MOT results for short (T = 60), medium (T = 120), and long (T = 300)
sequences.

Dataset Method MOTA↑ MOTP↑ IDF1↑ #IDS↓ %IDS↓ MT↑ ML↓ #FP↓ %FP↓ #FN↓ %FN↓

Short
ArTIST 63.7 84.1 48.7 86371 28.0 4684 0 9962 3.2 15525 5.0

VKF 56.0 82.7 77.3 5660 1.8 3742 761 64945 21.1 64945 21.1
Deep AR 67.4 76.1 83.1 5248 1.7 3670 129 49595 16.0 49595 16.0

MixDVAE 79.1 81.3 88.4 4966 1.6 4370 50 29808 9.7 29808 9.7

Medium
ArTIST 61.0 84.2 43.9 102978 24.6 2943 0 25388 6.1 34812 8.3

VKF 57.5 83.3 77.6 7657 1.8 2563 487 85053 20.3 85053 20.3
Deep AR 65.3 76.0 81.8 5387 1.3 2435 149 71775 17.0 71775 17.0

MixDVAE 78.6 82.2 88.0 6107 1.5 2907 120 41747 9.9 41747 9.9

Long
ArTIST 53.5 84.5 40.7 205263 20.1 2513 4 135401 13.2 135401 13.2

VKF 74.4 86.2 84.4 30069 2.9 2756 100 116160 11.4 116160 11.4
Deep AR 75.5 76.6 87.1 26506 2.6 2555 18 123262 12.1 123262 12.1

MixDVAE 83.2 82.4 90.0 23081 2.3 2890 12 74550 7.3 74550 7.3

to SRNN in the E-Z step. Ablation study on these factors is presented in Section 4.6.

The values of the MOT metrics obtained on short, medium and long sequence subsets

(T = 60, 120, and 300 frames, respectively) are shown in Table 4.1. We see that the

proposed MixDVAE algorithm obtains the best MOTA scores for the three subsets (i.e.,

for the three different sequence length values). This is remarkable given that ArTIST

was trained on the MOT17 training dataset, whereas MixDVAE never saw the ground-

truth sequences before the test. Furthermore, we notice that both VKF and MixDVAE

have much less IDS and much higher IDF1 scores than ArTIST, which implies that the

observation-to-source assignment based on the VI method is more efficient than direct

estimation of the position likelihood distribution to preserve the correct source identity

during tracking. Besides, the MixDVAE model also has better scores than the VKF model

for these two metrics, which implies that the DVAE-based dynamical model performs

better on identity preservation than the linear dynamical model of VKF. For the 60- and

120-frame sequences, the ArTIST model has lower FP and FN percentages and higher

MOTP scores (though the MOTP scores of all three algorithms are quite close for every

value of T). This is reasonable because, again, ArTIST was trained on the same dataset

using the ground-truth sequences while our model is unsupervised. Overall, the adverse

effect caused by frequent identity switches is much greater than the positive effect of lower

FP and FN for the ArTIST model. That explains why MixDVAE has much better MOTA

scores than ArTIST. For the long (300-frame) sequences, MixDVAE obtains an overall

100 Chapter 4: Application of MixDVAE on MOT

much better performance than the ArTIST model, since it obtains here the best scores for

6 metrics out of 8, including FP and FN. This shows that MixDVAE is particularly good

at tracking objects on the long term (we recall that T = 300 represents 10 s of video at

30 fps).

Besides, MixDVAE also globally exhibits notably better performance than VKF on all

of the three datasets. This clearly indicates that the modeling of the sources dynamics

with a DVAE model outperforms the use of a simple linear-Gaussian dynamical model

and can greatly improve the tracking performance. We can also notice that the VKF

algorithm globally performs much better on 300-frame sequences than on 60- and 120-

frame sequences. One possible explanation for this phenomenon is that the dynamical

patterns of long sequences are simpler than those of short and medium sequences. In fact,

the data statistics show that the average velocity in long sequences is much lower than

that in short and medium sequences. In this case, the linear dynamical model can perform

quite well –although not as well as the DVAE.

Finally, we can see in Table 4.1 that MixDVAE with SRNN as dynamical model has

an overall significantly better performance than MixDVAE with the baseline Deep AR

dynamical model. This demonstrates the important role of the latent variables in SRNN

for the dynamical modeling of sequential data. We remind that the latent vector z:,n is

assumed to efficiently encode the generative factors of source n’s trajectory.

4.5.2 QUALITATIVE ANALYSIS

To illustrate the behavior of MixDVAE and the baseline models, we present an example

of tracking result in Fig. 4.1. More examples can be found in Appendix A.2.4. In the

example of Fig. 4.1, the detection for Source 3 (o3 in the figure) is absent from t = 2 and

reappears after t = 20. But we limit the plot to t = 10 for a better visualization. This is a

case of long-term detection absence. An immediate identity switch occurs at t = 2 for the

ArTIST model. Then, the track obtained by ArTIST is no longer stable. We speculate the

reason for the frequent identity switches made by ArTIST is that the estimated distribu-

tions do not correspond well to the true sequential position distributions, which is possibly

101

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Ground
Truth

Detection

ArTIST

VKF

Deep AR

MixDVAE

m 2 m 1 m 3 m 2 m 1
m 3

m 2 m 1
m 3

m 2 m 1
m 3

m 2 m 1

m 3

m 2 m 1

m 3

m 2 m 1

m 3

m 2 m 1

m 3

m 2 m 1

m 3

m 2 m 1

m 3

Figure 4.1: Example of tracking result obtained with the proposed MixDVAE algorithm
and the two baselines. For clarity of presentation, the simplified notations s1, o1, and
m1 denote the ground-truth source position, the observation, and the estimated source
position, respectively (for Source 1, and the same for the two other sources). Best seen in
color.

due to the way these distributions are discretized. In addition to the identity switches, the

estimations generated by ArTIST at t = 5, 8, and 10 are not accurate. This causes a

decrease of the tracking performance. For the VKF model, the estimated bounding boxes

for Sources 2 and 3 (m2 and m3 in the figure) overlap each other. This means that the

two observations are both assigned to the same source, which is Source 2. From Equa-

tion 3.24 and Equation 3.25, we know that the value of the assignment variable depends

on the posterior mean and variance vectors mtn and Vtn, which themselves depend on the

dynamical model. With a linear dynamical model, VKF is not able to correctly predict

distinct m2 and m3 trajectories. The Deep AR model succeed to predict distinct m2 and

m3 trajectories. However, the trajectory m3 is not accurate due to the absence of o3. In

contrast, the very good dynamical modeling capacity of the DVAE makes MixDVAE able

to keep tracking despite of the long-term detection absence and generate reasonable m3

estimations, which correspond well to the ground-truth trajectory of Source 3 (s3 in the

figure).

102 Chapter 4: Application of MixDVAE on MOT

Table 4.2: Capacity of the SRNN model pre-trained at three data scales of the synthetic
trajectories dataset. SRNN-full, SRNN-half, and SRNN-quarter stand for SRNN pre-
trained on the totality, half of and quarter of our original training set, respectively.

Model name Training loss Validation loss

SRNN-full -40.77 -40.15

SRNN-half -39.36 -38.86

SRNN-quarter -36.55 -35.27

4.6 ABLATION STUDIES

In order to better understand the MixDVAE model, we conducted ablation studies on the

influence of the pre-trained DVAE model quality, the influence of fine-tuning the DVAE,

and the influence of the observation variation matrix ratio rΦ.

4.6.1 INFLUENCE OF THE PRE-TRAINED DVAE MODEL QUALITY

To understand the influence of the pre-trained DVAE model quality on the performance

of MixDVAE , we have pre-trained the DVAE model at different data scales and tested

the performance of MixDVAE using these different pre-trained models. Specifically, the

SRNN model is pre-trained on three separate datasets with different scales: the full syn-

thetic trajectories training set used in Section 4.3, consisting of 12,105 trajectories, a

dataset containing half of these synthetic trajectories, randomly selected (6,052 trajecto-

ries), and another dataset with a quarter of these synthetic trajectories, randomly selected

(3,026 trajectories). We use the ELBO loss to represent the quality of the resulting pre-

trained SRNN models. The ELBO loss values are reported in Table 4.2. As expected,

we observe that by decreasing the training data size, the performance of the SRNN model

drops (with higher training and validation loss).

We run the MixDVAE inference algorithm with the three pre-trained SRNN models

on the short sequence test subset (T = 60 frames), and the obtained results are reported

in Table 4.3. We can see that the overall performance of the MixDVAE algorithm with

SRNN-half and SRNN-quarter drops compared to that with SRNN-full, but this drop

103

Table 4.3: MOT results obtained by MixDVAE with SRNN pre-trained at the three data
scales. The results are reported for the short sequence test subset (T = 60 frames).

Model name MOTA↑ MOTP↑ IDF1↑ #IDs↓ %IDs↓ MT↑ ML↓ #FP↓ %FP↓ #FN↓ %FN↓
SRNN-full 79.1 81.3 88.4 4966 1.6 4370 50 29808 9.7 29808 9.7
SRNN-half 74.7 84.4 86.6 5624 1.8 4039 94 38153 12.4 38153 12.4

SRNN-quarter 75.2 84.4 86.9 5598 1.8 4040 91 37443 12.2 37443 12.2

Table 4.4: MOT results obtained by MixDVAE with and without the fine-tuning of
SRNN. The results are reported for the short, medium and long sequence test subsets
(T = 60, 120, and 300 frames, respectively).

Dataset Fine-tuning MOTA↑ MOTP↑ IDF1↑ #IDs↓ %IDs↓ MT↑ ML↓ #FP↓ %FP↓ #FN↓ %FN↓

Short Yes 75.1 83.5 86.7 2862 0.9 4067 64 36990 11.9 36990 11.9
No 79.1 81.3 88.4 4966 1.6 4370 50 29808 9.7 29808 9.7

Medium Yes 73.1 84.0 85.9 3044 0.7 2705 136 54604 13.1 54604 13.1
No 78.6 82.2 88.0 6107 1.5 2907 120 41747 9.9 41747 9.9

Long Yes 65.6 84.9 81.6 8670 0.8 2286 67 171515 13.8 171515 13.8
No 83.2 82.4 90.0 23081 2.3 2890 12 74550 7.3 74550 7.3

is relatively limited, at least for some of the metrics, including the key MOTA metric.

Moreover, the difference between the performance of MixDVAE with SRNN-half and

with SRNN-quarter is quite small. Therefore, even if it is hard to draw a general con-

clusion from a single experiment with three dataset sizes, this seems to indicate some

robustness of MixDVAE w.r.t. the DVAE training dataset size, and confirm its interest as

a data-frugal weakly supervised method (here for the MOT application).

4.6.2 INFLUENCE OF THE DVAE FINE-TUNING

As mentioned in Section 3.3.2, the DVAE model can either be fine-tuned or not in the

MixDVAE algorithm. We have studied the effect of fine-tuning SRNN.

Table 4.4 shows the MOT scores obtained by MixDVAE on the three test subsets

with and without the fine-tuning of SRNN in the E-Z step. We observe that for all

three datasets, not fine-tuning the DVAE model leads to the best overall performance

(as measured by MOTA in particular). Though fine-tuning the DVAE model can indeed

increase the MOTP score and decrease the number of identity switches, it does not im-

prove the overall tracking performance. Indeed, fine-tuning increases the FP and FN num-

bers/proportions, and thus decreases the MOTA scores. Especially on the long sequence

104 Chapter 4: Application of MixDVAE on MOT

dataset, the MOTA score drops from 83.2 to 65.6.

Example 1

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

s 2
s 1 s 3

o 2
o 1

o 2
o 1 o 3

o 2
o 1

o 2
o 1

o 2
o 1 o 3

o 2
o 1

o 2
o 1 o 3

o 2
o 1 o 3

o 2
o 1 o 3

o 2
o 1

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1

m 3

m 2
m 1 m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1 m 3

m 2
m 1

m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1 m 3

m 2
m 1

m 3

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Ground
Truth

Detection

Without
Fine-tuning

With
Fine-tuning

Example 2

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

s 2
s 1

s 3

o 2
o 1

o 3

o 2
o 1

o 3

o 2
o 1

o 3

o 2
o 1

o 2
o 1

o 2
o 1 o 2

o 1
o 2

o 1

o 3

o 2
o 1

o 3

o 2
o 1

o 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3
m 2

m 1

m 3
m 2

m 1

m 3

m 2
m 1

m 3
m 2

m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

m 2
m 1

m 3

t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 t = 70 t = 80 t = 90

Ground
Truth

Detection

Without
Fine-tuning

With
Fine-tuning

Figure 4.2: Two examples of tracking result obtained with the proposed MixDVAE algo-
rithm, with and without fine-tuning during the E-Z step. For clarity of presentation, the
simplified notations s1, o1, and m1 denote the ground-truth source position, the observa-
tion, and the estimated position, respectively (for Source 1, and the same for the two other
sources). Best seen in color.

We therefore observe that fine-tuning the DVAE model results in performance degra-

dation. The possible reason is that fine-tuning could make the model more sensible to

observation noise, and lead to a generative model with worse performance. To verify this

conjecture and to better understand the effect of fine-tuning, we have plotted in Fig. 4.2

two tracking examples, extracted from the long sequence test subset (T = 300 frames).

105

Table 4.5: Results obtained by MixDVAE on MOT17-3T (short sequences subset) for
different values of rΦ. The values on the left (resp. right) side of the slashes are obtained
without (resp. with) the fine-tuning of SRNN in the E-Z Step.

rΦ MOTA↑ MOTP↑ IDF1↑ #IDs↓ %IDs↓ MT↑ ML↓ #FP↓ %FP↓ #FN↓ %FN↓
0.01 35.9/32.8 84.5/84.8 66.6/65.5 4914/3216 1.6/1.0 2946/2714 916/913 96438/102062 31.3/33.1 96438/102062 31.3/33.1
0.02 65.5/61.8 84.2/84.7 81.3/79.8 5319/3073 1.7/1.0 3932/3652 407/379 50596/57291 16.4/18.6 50596/57291 16.4/18.6
0.03 74.9/70.0 83.1/84.3 86.1/84.4 5088/2853 1.7/0.9 4232/3931 158/160 36165/43777 11.7/14.2 36165/43777 11.7/14.2
0.04 79.1/75.1 81.3/83.5 88.4/86.7 4966/2862 1.6/0.9 4370/4067 50/64 29808/36990 9.7/11.9 29808/36990 9.7/11.9
0.05 76.4/75.6 79.2/82.6 87.1/87.1 4982/2919 1.6/0.9 4268/4066 42/53 33924/36088 11.0/11.7 33924/36088 11.0/11.7
0.06 69.2/70.1 76.9/82.0 83.5/84.4 5297/3005 1.7/1.0 3978/3845 73/137 44793/44598 14.5/14.5 44793/44598 14.5/14.5
0.07 59.8/66.8 74.8/80.3 78.9/82.9 5146/3000 1.7/1.0 3688/3775 188/285 59348/49646 19.2/16.1 59348/49646 19.2/16.1
0.08 48.5/60.6 73.1/79.4 73.3/79.9 5097/3119 1.7/1.0 3303/3637 337/432 76865/59220 24.9/19.2 76865/59220 24.9/19.2

To make possible the display of a long sequence in a limited space, the first example is

plotted every 5 frames, whereas the second example is plotted every 10 frames. In Ex-

ample 1, we observe that the detection for source s3 is missed for t = 0, t = 10, t = 15,

t = 25 and t = 45. At these frames, MixDVAE without SRNN fine-tuning can still make

a good estimation of s3’s position, whereas MixDVAE with SRNN fine-tuning can not

make an accurate prediction. In the latter case, this caused a large error between the esti-

mated source position and the ground truth. We can see a similar phenomena in Example

2. At frame t = 30, t = 40, t = 50 and t = 60, when the detection bounding box for

source s3 is absent, the estimation obtained by MixDVAE with SRNN fine-tuning is bad

(it is particularly bad for t = 40). This phenomenon confirms our conjecture that the

observation noise, particularly the lack of observations, can introduce unforeseen effects

during fine-tuning, resulting in a model with degraded performance.

4.6.3 INFLUENCE OF THE OBSERVATION VARIANCE RATIO

Table 4.5 reports the MOT scores obtained with MixDVAE as a function of rΦ. These

experiments are conducted on the subset of short sequences. We report the results for

both with and without fine-tuning SRNN in the E-Z step. Apart from the value of rΦ and

the fine-tuning option, all other conditions are exactly the same across experiments.

Table 4.5 shows that, whether fine-tuning SRNN in the E-Z step or not, the MOT scores

first globally increase with rΦ,3 reach their optimal values for rΦ = 0.04 or 0.05 (for most

3Except for the MOTP score, which continually decreases with the increase of rΦ.
This can be explained as follows. MOTP measures the precision of the position estima-

106 Chapter 4: Application of MixDVAE on MOT

Figure 4.3: MOTA score obtained by MixDVAE as a function of the number of VEM
iterations, for different values of rΦ.

metrics), and then decrease for greater rΦ values. For confirmation, we have also com-

puted the averaged empirical ratio r̂Φ of the detected bounding boxes (with the SDP de-

tector), which is calculated as 1
4T

∑T
t=1

1
Kt

∑Kt

k=1(
|sL

tk−oL
tk|

oR
tk−oL

tk
+

|sT
tk−oT

tk|
oT
tk−oB

tk
+

|sR
tk−oR

tk|
oR
tk−oL

tk
+

|sB
tk−oB

tk|
oT
tk−oB

tk
).4

This value equals to 0.053, 0.053 and 0.047 respectively for the short, medium and long

sequence dataset. These values, which are close to each other because we used the same

detector, correspond well to the rΦ value for the best performing model in Table 4.5.

We can conclude that the model has better performance if the value of rΦ corresponds

(empirically) to the detector performance. Besides, we have also observed that the value

of rΦ has an impact on the convergence of the MixDVAE algorithm. Fig. 4.3 displays

the MOTA score as a function of the number of MixDVAE iterations (here with the fine-

tuning of the DVAE model). It appears clearly that for too high values of rΦ, the model

exhibits a lower and more hectic performance than for the optimal value.

tion for the matched bounding boxes. The estimated position mtn in Equation 3.19 is a
weighted combination of the observation and the DVAE prediction. When Φtk increases,
the contribution of the observation decreases and mtn is closer to the DVAE prediction.
Since the error of the DVAE prediction may accumulate over time, this finally decreases
the position estimation accuracy.

4Note that here stk denotes the position of the target matched with the observation otk
at time frame t. We omit the target positions that are not matched with any observation.

CHAPTER 5

APPLICATION OF MIXDVAE ON

SC-ASS

Mathematics compares the most diverse

phenomena and discovers the secret

analogies that unite them.

— Joseph Fourier

107

108 Chapter 5: Application of MixDVAE on SC-ASS

This chapter is based on the following publication:

Xiaoyu Lin, Laurent Girin, and Xavier Alameda-Pineda. “Mixture of dynamical varia-

tional autoencoders for multi-source trajectory modeling and separation.” In Transactions

on Machine Learning Research, 2023.

5.1 APPLICATION OF MIXDVAE ON SC-ASS

In this chapter, we present the application of MixDVAE on the SC-ASS taks. Before

diving into the details of the application configurations, we would like to make clear that

the goal of applying MixDVAE to audio source separation is not to compete with su-

pervised state-of-the-art methods on this task, but it is rather to illustrate its versatility,

i.e. deliver a proof-of-concept for its applicability to tasks that are as diverse as MOT in

computer vision and audio source separation. Besides, one major benefit of the MixDVAE

is that, as explained in Section 3.1, it can be considered as data-frugal and weakly super-

vised since it only uses one or several single-source(-type) dataset(s) of moderate size for

training, in contrast to supervised state-of-the-art models, which use massive dataset of

parallel/aligned mixture and single-source samples.

In SC-ASS, when applying the time-frequency masking approach and the W-disjoint

assumption (as discussed in Section 2.5.2), each time-frequency (TF) bin of the spectro-

gram of the observed mixture signal is assumed to belong to a dominant source. This mask

can be modeled in a probabilistic way using a discrete assignment variable. Therefore,

we can apply the proposed MixDVAE model to solve the SC-ASS problem by combining

this assignment variable with a set of DVAEs modeling the dynamics of the audio sources

in the TF domain. The main difference compared to the MOT problem is that we have

to consider the frequency dimension in addition to time, and at a given TF bin, we have

here only one single observation to assign to a source, instead of a set of observations.

We apply this principle and illustrate the use of MixDVAE for SC-ASS in Chapter 5. It

can be noted that the dynamics of different types of audio source signals (speech, musical

instruments, noises, etc.) can be very different. So, this is a typical use-case where we

109

can pre-train different DVAE models on different single-source datasets to capture the

dynamics of different types of source.

5.2 SETTING MIXDVAE IN THE SC-ASS CONFIGURATION

When applying MixDVAE to the SC-ASS task, we work in the STFT domain. This

implies that both the source and observation vectors are complex-valued. More precisely,

the n-th source vector stn = {stn,f}Ff=1 ∈ CF is the short-time spectrum of audio source

n at time frame t (f denotes the frequency bin and s ∈ CT×F is the complete STFT

spectrogram). The number of frequency bins, F , is typically set to 256, 512 or 1024

(a power of 2 is preferred to use the fast Fourier transform). As is usually adopted in

audio processing, stn is assumed to follow a zero-mean circularly-symmetric complex

Gaussian prior distribution [62, 124, 72], i.e. Equation 2.35 becomes pθs(st|s1:t−1, z1:t) =

Nc

(
st;0, diag(vθs,t(s1:t−1, z1:t))

)
. More specifically, the complex Gaussian distributions

are used to characterize complex random variables whose real and imaginary parts are

jointly Gaussian distributed [75]. Given a multivariate complex random variable Z = X+

iY ∈ Cd that follows a complex Gaussian distribution, the distribution is characterized

by three parameters: the mean vector µ = E[Z] ∈ Cd, the covariance matrix Γ = E[(Z−

µ)(Z − µ)H] ∈ Cd×d, and the relation matrix C = E[(Z − µ)(Z − µ)T] ∈ Cd×d. In

the special case of central (zero-mean) circularly-symmetric Gaussian distribution, both

µ and C equal zero, and the PDF of Z only depends on its magnitude but not on its

phase [111]. In such cases, the squared magnitude |Z|2 follow a exponential distribution

whereas the phase is uniformly distributed between [−π, π]. As in practice, the DNNs

can only take real values as input. When processing the STFT spectrograms, the DVAE

model will input the squared magnitude of the STFT coefficients, instead of the complex

values. By injecting the exponential conditional distributions into the ELBO, it becomes

L(θs, ϕz; s1:T) = −
T∑
t=1

Eqϕz

[
dIS(|st|2,vθs,t)+DKL

(
qϕz(zt|z1:t−1, s1:T)||pθz(zt|s1:t−1, z1:t−1)

)]
,

110 Chapter 5: Application of MixDVAE on SC-ASS

where dIS(·, ·) is the Itakura-Saito (IS) divergence [62], and DKL(·||·) is the KL diver-

gence.

The latent space dimension L is typically set to a value significantly lower than F .

Also, here, o = {otf}TF
t,f=1 ∈ CF×T denotes the STFT spectrogram of the observed

mixture signal. We define the k-th observation variable at frame t as otk = otf ∈ C,

which is the STFT coefficient of the mixture signal at TF bin (t, f). In other words,

the observation index k is identified with the frequency bin/index f , and the total num-

ber of observations at any frame t equals the number of frequency bins, i.e. Kt = F

for each t. We note that in this case, stn and otk do not have the same dimension, even

though stn and ot,: do. Therefore, as mentioned in Footnote 2 of Chapter 3, we need to

define a projection matrix Pk ∈ C1×F , which is here the transposed one-hot vector acti-

vated at the k-th index. Finally, the observation otk = otf is modeled with a conditional

circularly-symmetric complex Gaussian, centered at the corresponding source coefficient,

and Equation 3.3 becomes pθo(otk|wtk = n, stn) = Nc(otk;Pkstn,Φtk). We can see that

the assignment variable wtk associates each TF-bin of the observed mixture spectrogram

to one of the sources, and thus implicitly defines a TF mask. All these adaptations yield

minimal changes in the MixDVAE derivation and solution. These changes are provided in

Appendix A.3.1, including the final source vector estimate. Note that the estimated n-th

source waveform is obtained by applying the inverse STFT on m1:T,n.

5.3 DVAE PRE-TRAINING

5.3.1 DATASET

We illustrate the application of MixDVAE to the SC-ASS problem with the separation of

a speech signal and a musical instrument, in the present case the Chinese bamboo flute

(CBF). These two audio sources have very different spectral and dynamical patterns. So,

we choose here to pre-train two instances of the same DVAE model separately on two

single-source datasets, a speech dataset and a CBF dataset. For the speech dataset, we

used the Wall Street Journal (WSJ0) dataset [63], which is composed of 16-kHz mono-

phonic speech signals, with three subsets: si tr s, si dt 05 and si et 05, used for model

111

training, validation and test, and containing 24.9, 2.2 and 1.5 hours of speech recordings,

respectively. For the musical instrument dataset, we used the CBF dataset of [215], which

contains CBF performances recorded by 10 professional CBF performers. The dataset

comprises recordings of both isolated playing techniques and full-length pieces. We only

used the full pieces recordings in our experiments. The original recordings are stereo

and at a sampling frequency of 44.1kHz. In our experiments, we used only one channel

and downsampled the signals to 16-kHz, to match the speech signals rate. We selected

the second half pieces recordings of player 1 and 2 as the validation set, the second half

pieces recordings of player 3, 4 and 5 as the test set, and use all other recordings for DVAE

pre-training. The total duration of the training, validation and test sets are 2.1, 0.2 and 0.3

hours respectively. For both datasets, we used the training set for DVAE pre-training and

the validation set for early stopping.

5.3.2 PRE-PROCESSING

For both the speech and CBF dataset, we pre-processed the raw audio signals in the fol-

lowing way. First, the silence at the beginning and end of each signal are trimmed with a

voice activity detection threshold of 30 dB. Then, the waveform signals are normalized by

dividing their absolute maximum value. The STFT coefficients are computed with a 64-

ms sine window (1024 samples) and a 75%-overlap (256-sample hop length), resulting in

sequences of 513-dimensional discrete Fourier coefficient vectors (for positive frequen-

cies). Note that in practice, the DVAE model will input speech power spectrograms, i.e.,

the squared modulus of s, instead of the complex-valued STFT spectrograms [71, Chap-

ter 13], and these STFT power spectrograms are split into smaller sequences of length 50

frames (corresponding to audio segments of 0.8 s) for training.

5.3.3 TRAINING DETAILS

We also used the SRNN model with scheduled sampling training (see Section 4.3). The

model was trained with the Adam optimizer with a learning rate set to 0.002 and a batch

size set to 256. The latent space dimension L was set to 16. The early-stopping patience

was set to 50 epochs for the WSJ0 dataset and 200 epochs for the CBF dataset.

112 Chapter 5: Application of MixDVAE on SC-ASS

5.4 MIXDVAE EVALUATION SET-UP

5.4.1 DATASET

To generate the test mixture signals, we first randomly selected two signals from the WSJ0

test set and the CBF test set, respectively. Then, we removed the silence at the beginning

and end in the same way as for the pre-processing. The clipped speech and CBF signals

were mixed together with several different speech-to-music (power) ratios, namely −10,

−5, 0 and 5 dB. The waveform mixture signals were then normalized and transformed

to STFT spectrograms in the same way as in the pre-processing. Similar to the MOT

scenario, we tested MixDVAE with different test sequence length values. To this aim, the

mixed signal STFT spectrograms were split into subsequences of length 50, 100 and 300

frames (respectively corresponding to audio segments of 0.8, 1.6 and 4.8 s). Overall, we

generated 878, 491, and 372 mixed test signals of length T = 50, 100 and 300 frames,

respectively.

5.4.2 ALGORITHM INITIALIZATION

As for MOT, we need to initialize the values of several parameters and variables. For SC-

ASS, it is more difficult to obtain a reasonable initialization for mtn (complex-valued)

using directly the observed mixture signal. We thus choose the following VEM iteration

order: E-Z/E-S Step, E-W Step. In this case, we have to initialize the posterior distribution

of the assignment variable (i.e. all the values of ηtkn), the input vectors of the DVAE

encoder s1:T,n (for the two sources), and the observation model covariance matrices Φtk.

We initialize ηtkn with a discrete uniform distribution. As for the DVAE encoder, we first

input the power spectrogram of the mixture signal (recall that the two DVAEs were pre-

trained on different natural single-source datasets). We then use the reconstructed output

power spectrograms as the initialization of the DVAE encoders input.

113

5.4.3 OBSERVATION COVARIANCE MATRIX

Similar to the MOT case, Φtk is not estimated in the M Step, but fixed to r2Φ|otk|2. In

plain words, Φtk is set to a fraction of the observation power. This setting turned out to

stabilize the VEM iteration process and finally led to very satisfying estimation results.

5.4.4 HYPERPARAMETERS

Regarding the hyperparameters of the MixDVAE VEM algorithm for the SC-ASS task,

the observation covariance matrix ratio rΦ is set to 0.01. The total number of iterations

I is set to 70. And the DVAE model is not fine-tuned in the E-Z step for the reported

experiments.

5.4.5 BASELINES

As mentioned in Section 2.5.2, the state-of-the-art SC-ASS methods are mostly fully su-

pervised, thus requiring a very large amount of paired (aligned) mixture signals and indi-

vidual source signals for training. Very few methods are under the weakly-supervised or

unsupervised settings. Thus, it is difficult to find a fairly comparable baseline model. In

the presented experiments, we have compared the proposed MixDVAE method with the

unsupervised audio source separation method called MixIT [220] and with two weakly-

supervised methods based on NMF, namely a vanilla NMF model [52] and an NMF model

with temporal extensions [211]. MixIT is a deep-learning-based unsupervised single-

channel source separation method. It is trained on a dataset constructed by mixing up the

existing mixture audio signals. The model separates them into a variable number of latent

source signals that can be remixed to approximate the original mixtures. In a totally unsu-

pervised setting, MixIT does not require having the separated source signals for training.

For the implementation of the MixIT model, we have reused the code provided by the au-

thors and adapted it for the speech-CBF source separation task. In the weakly-supervised

NMF baseline methods, an NMF model is first pre-trained on each single-source dataset

separately, resulting in a dictionary of non-negative spectral templates Wn for each of the

sources to separate. Such pre-training is similar in spirit to the pre-training stage of the

https://github.com/google-research/sound-separation

114 Chapter 5: Application of MixDVAE on SC-ASS

MixDVAE method. After that, the obtained spectral template dictionaries of all sources

are fixed and concatenated together so as to learn the temporal activation matrix H for the

test mixture signal. Then the H entries corresponding to the spectral templates in Wn are

used to separate source n (in practice, Wiener filters are build to separate the sources in the

STFT domain, see [52] and [211] for details). We have re-implemented both NMF-based

baselines according to the formula given in the corresponding papers. The latent dimen-

sion K of the NMF model for both speech and CBF data is set to 128, which is determined

by grid search. To demonstrate the interest of using a DVAE model for modeling the au-

dio source dynamics in MixDVAE, we made additional experiments with replacing the

DVAE model in MixDVAE with two other dynamical models: a linear-Gaussian dynami-

cal model and a deep auto-regressive dynamical model, which results in baseline models

similar to the VKF model and the Deep AR model that we have already used in our MOT

experiments (see Section 4.4). For the VKF model, we initialize the values of ηtkn in two

ways: the ground-truth assignment mask, which is also named as ideal binary mask (IBM)

in the audio source separation literature (we call the resulting model VKF-oracle) and the

mask defined from the outputs of the pre-trained DVAEs when inputing the mixture sig-

nal spectrogram (we call the resulting model VKF-DVAE-init). Note that VKF-oracle

provides an (unrealistic) upper bound of separation performance with a linear dynamical

model, whereas VKF-DVAE-init uses the same initial information as MixDVAE. Φtk are

fixed to the same values as for MixDVAE and Λtn are initialized with the identity matrix

multiplied by a scalar. For the Deep AR model, it is implemented with an LSTM layer,

with the hidden dimension set equal to that of the LSTM layers employed in the DVAE

model. Finally, to investigate the effects of the VEM algorithm in the MixDVAE model,

we also compared our model with the direct reconstruction of the source signals from

the output of the pre-trained DVAEs when using the mixture spectrogram as the input,

i.e. the information used to intialize both MixDVAE and VKF-DVAE-init (we call this

baseline method DVAE-init). As these output spectrograms are power spectrograms, we

combined their square root (amplitude spectrogram) with the phase spectrogram of the

mixture signal to reconstruct the waveform of the baseline separated signals.

115

5.4.6 EVALUATION METRICS.

We used four source separation performance metrics widely-used in speech/audio pro-

cessing. The root mean squared error (RMSE), the scale-invariant signal-to-distortion

ratio (SI-SDR) [175] in dB, and the perceptual evaluation of speech quality (PESQ) score

[172] (values in [−0.5, 4.5]).1 For all metrics, the higher the better.

5.5 EXPERIMENTAL RESULTS

5.5.1 QUANTITATIVE ANALYSIS

We report the speech-CBF separation results on the short, medium and long test sequence

subsets (T = 50, 100, 300 frames, respectively) in Table 5.1. In addition to the results

obtained by the different models, we also report the values of the evaluation metrics when

applied on the mixture signal, for reference.

We observe that on the short and medium sequence subsets, MixDVAE achieves the

best performance for all of the evaluation metrics. While on the long sequences subsets,

MixIT obtains slightly better results than MixDVAE for the speech. This demonstrates

that the proposed method works well on the SC-ASS task. Unsurprisingly, VKF-Oracle

obtains the best scores on all metrics because it was initialized with the ground-truth mask.

When comparing MixDVAE with the methods of different dynamical models, we find

that MixDVAE obtains overall better performance than both VKF-DVAE-init and Deep

AR on all of the metrics for all of the three subsets. It is clear that the non-linear DVAE

model with stochastic latent variables is much more efficient than the linear-Gaussian

model and the deep auto-regressive model without latent variables for modeling the audio

source dynamics. Besides, with the increase of the sequence length, the performance of

MixDVAE dropped quite moderately (less than 0.6 dB and less than 0.3 dB in SI-SDR

gain decrease on speech and CBF respectively), while the performance of VKF dropped

1The PESQ objective measure was developed mostly for evaluating the quality of
speech signals, but since it is largely based on a model of Human auditory perception,
we assume we can also use it on the CBF sounds to avoid to complicate the evaluation
protocol.

116 Chapter 5: Application of MixDVAE on SC-ASS

Table 5.1: SC-ASS results for short (T = 50), medium (T = 100), and long (T = 300)
sequences.

Dataset Method Speech Chinese bamboo flute
RMSE ↓ SI-SDR ↑ PESQ ↑ RMSE ↓ SI-SDR ↑ PESQ ↑

Short

Mixture 0.016 -4.94 1.22 0.016 4.93 1.09
VKF-Oracle 0.004 14.83 2.00 0.004 20.15 2.33

DVAE-init 0.013 -0.51 1.20 0.019 3.04 1.44
VKF-DVAE-init 0.012 2.24 1.21 0.012 8.06 1.33

Deep AR 0.009 5.32 1.29 0.018 5.19 1.48
MixIT 0.011 3.26 - 0.009 7.15 -

Vanilla NMF 0.011 3.01 1.40 0.012 9.09 1.37
Temporal NMF 0.009 4.99 1.53 0.011 10.26 1.53

MixDVAE 0.006 9.23 1.73 0.007 13.50 2.30

Medium

Mixture 0.016 -4.44 1.17 0.016 4.44 1.08
VKF-Oracle 0.004 14.88 1.88 0.003 20.24 2.41

DVAE-init 0.014 0.10 1.15 0.020 2.42 1.27
VKF-DVAE-init 0.013 1.25 1.12 0.013 7.42 1.26

Deep AR 0.010 4.88 1.21 0.017 5.17 1.35
MixIT 0.009 4.75 - 0.009 8.74 -

Vanilla NMF 0.011 3.28 1.41 0.011 8.88 1.35
Temporal NMF 0.010 5.12 1.48 0.011 9.96 1.44

MixDVAE 0.007 9.32 1.65 0.007 13.05 2.16

Long

Mixture 0.016 -4.52 1.19 0.016 4.53 1.10
VKF-Oracle 0.004 14.65 1.89 0.003 20.45 2.60

DVAE-init 0.013 0.20 1.15 0.020 2.29 1.22
VKF-DVAE-init 0.013 0.34 1.10 0.013 7.35 1.24

Deep AR 0.010 3.87 1.17 0.017 4.74 1.27
MixIT 0.006 10.2 - 0.007 11.76 -

Vanilla NMF 0.011 3.31 1.40 0.011 8.98 1.35
Temporal NMF 0.010 5.01 1.47 0.011 10.06 1.42

MixDVAE 0.007 9.06 1.64 0.007 12.92 2.06

by 2.32 dB on speech and by 0.71 dB on CBF, and the performance of Deep AR dropped

by 1.45 dB on speech and by 0.45 dB on CBF.

Compared to DVAE-init, both MixDVAE and VKF-DVAE-init exhibit better separa-

tion performance (at least in terms of SI-SDR for VKF-DVAE-init). This indicates that the

multi-source dynamical model with the observation-to-source assignment latent variable

plays an important role in separating the content of different audio sources.

Although MixIT obtains slightly better performance than MixDVAE for speech on

the long sequences subsets, its performance on short and medium sequences subsets is

quite bad (in terms of SI-SDR, only 3.26 dB for speech and 7.15 dB for CBF on the

117

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

(a) Mixture

Sp
ee

ch

(b) Ground Truth

Fl
ut

e

(c) VKF-Oracle
40

30

20

10

0

10

20

30

40

Sp
ee

ch

(d) DVAE-init

Fl
ut

e

(e) VKF-DVAE-init (f) MixDVAE
40

30

20

10

0

10

20

30

40

Figure 5.1: An example of audio source separation result obtained with the proposed
MixDVAE algorithm and the baselines (speech and CBF power spectrograms). Best seen
in color.

short sequences subset, and 4.75 dB for speech and 8.74 dB for CBF on the medium

sequences subset). As for the NMF based models, though adding temporal extensions

to the vanilla NMF model indeed improves the model performance, the obtained results

remain significantly inferior to that obtained by MixDVAE.

5.5.2 QUALITATIVE ANALYSIS

To illustrate the behavior of the different models, we selected an audio source separa-

tion example and plotted the spectrograms in Fig. 5.1. More examples can be found in

Appendix A.3.2. In the given example, the sequence length of the spectrograms is 300

frames. It is obvious that the ground-truth spectrograms of both the speech and CBF have

118 Chapter 5: Application of MixDVAE on SC-ASS

spectral components with non-linear trajectories over time. Even though VKF-Oracle

achieves the best performance, we observe in Fig. 5.1(c) that there are several stationary

traces (artifactual horizontal spectral lines) in the spectrograms caused by the inappro-

priate linear dynamics hypothesis. This phenomenon becomes even worse when VKF is

initialized with the mask defined by the outputs of the pre-trained DVAEs (VKF-DVAE-

init). In Fig. 5.1(d), we clearly see the stationary traces, especially for the separated

speech spectrogram. We believe that this is the reason why VKF-DVAE-init showed poor

separation performance in general. When looking at the outputs of the pre-trained DVAE

models, we find that the pre-trained DVAE models can provide a relatively good initializa-

tion for the VEM algorithm, even if we are still far from separated sources. In fact, since

in the SC-ASS task, we pre-trained separately two DVAE models on the speech dataset

and on the CBF dataset, the pre-trained DVAE models already have some prior informa-

tion about the single-source dynamics. Though we only give the mixture spectrogram as

input, the pre-trained DVAE models can, to some extent, enhance the information of the

source used in pre-training and attenuate the information of the other source. However,

this kind of filtering is not very efficient. As we can see in the top figure of Fig. 5.1(e), the

output spectrogram provided by the DVAE model pre-trained on the speech dataset still

keeps a significant amount of information on the CBF. Finally, even if the initialization is

not that accurate, we see in Fig. 5.1(f) that MixDVAE achieved a good separation of the

two sources after running the VEM iterations.

5.6 ABLATION STUDIES

Similar to the MOT task, we conduct ablation studies for the SC-ASS task on the influence

of the pre-trained DVAE model quality and the influence of fine-tuning the DVAE.

5.6.1 INFLUENCE OF THE PRE-TRAINED DVAE MODEL QUALITY

Similar to the MOT task in Section 4.6.1, we also generated two additional subsets of

the training data for both the WSJ0 and CBF datasets, comprising half and a quarter of

our original training dataset (used in Section 5.3.1), randomly selected. The two new

119

Table 5.2: Capacity of the SRNN model pre-trained at three data scales of the WSJ0
and the CBF datasets. SRNN-full, SRNN-half, and SRNN-quarter stand for SRNN pre-
trained on the totality, half of and quarter of our original training set, respectively.

Model name WSJ0 CBF
Training loss Validation loss Training loss Validation loss

SRNN-full 353.89 373.61 521.76 779.69

SRNN-half 358.13 389.58 489.53 949.11

SRNN-quarter 361.58 383.64 646.55 1106.27

Table 5.3: SC-ASS results obtained by MixDVAE with SRNN pre-trained at the three
data scales. The results are reported for the short sequence test subset (T = 50).

Model name Speech Chinese bamboo flute
RMSE ↓ SI-SDR ↑ PESQ ↑ RMSE ↓ SI-SDR ↑ PESQ ↑

SRNN-full 0.006 9.23 1.73 0.007 13.50 2.30
SRNN-half 0.006 9.66 1.82 0.009 12.29 2.28

SRNN-quarter 0.007 8.83 1.79 0.011 10.29 2.13

subsets of WSJ0 contains 12.45 and 6.29 hours of speech recordings respectively. And

the two new subsets of CBF contains 1.07 and 0.55 hours of CBF recordings respectively.

The performance of the SRNN model pre-trained on these different datasets is reported

in Table 5.2. For the WSJ0 dataset, we observe that the training and validation losses

are relatively close to each other, and both increase when decreasing the training data

size, but the increase is moderate. Therefore, the capacity of SRNN drops, but quite

slightly. However, for the CBF dataset, the gap between the training and validation losses

is higher, and the training loss of SRNN-half decreases compared to SRNN-full while the

validation loss increases significantly, increasing the gap. Both the training loss and the

validation loss of SRNN-quarter are higher than that of SRNN-full and SRNN-half, and

the gap between training and validation is also relatively large. This shows that the size

of the (full) CBF dataset may be a bit too limited, and reducing this dataset may harm the

generalization capacity of SRNN.

The SC-ASS results obtained by MixDVAE with SRNN pre-trained at the three differ-

ent data scales are reported in Table 5.3. The experiments are conducted on the short se-

120 Chapter 5: Application of MixDVAE on SC-ASS

Table 5.4: SC-ASS results obtained by MixDVAE with and without the fine-tuning of
SRNN. The results are reported for the short (T = 50), medium (T = 100) and long
(T = 300) test sequence subsets.

Dataset Finetuning Speech Chinese bamboo flute
RMSE ↓ SI-SDR ↑ PESQ ↑ RMSE ↓ SI-SDR ↑ PESQ ↑

Short Yes 0.007 8.00 1.63 0.007 12.73 2.15
No 0.006 9.23 1.73 0.007 13.50 2.30

Medium Yes 0.008 8.00 1.55 0.008 12.23 2.02
No 0.007 9.32 1.65 0.007 13.05 2.16

Long Yes 0.008 7.02 1.49 0.008 11.40 1.88
No 0.007 9.06 1.64 0.007 12.92 2.06

quence subset (T = 50). We find that, surprisingly, the separation performance of MixD-

VAE with SRNN-half on the speech signals has been slightly improved over SRNN-full,

whereas (much less surprisingly) the performance on the CBF signals has decreased. This

may be caused by the lower generalization ability of SRNN-half on the CBF dataset. For

SRNN-quarter, the performance of MixDVAE on both the speech and the CBF decrease,

but the decrease for the speech is quite moderate (0.4 dB SI-SDR w.r.t. SRNN-full; the

PESQ value is even slightly better), whereas the CBF is loosing about 3.2 dB SI-SDR.

Again, even if it is difficult to draw a general conclusion from this single experiment, those

results seem to indicate a relative robustness of MixDVAE to the limitation of the DVAE

training dataset size, provided that the DVAE keeps a sufficient generalization capability.

5.6.2 INFLUENCE OF THE DVAE FINE-TUNING

Table 5.4 shows the performance of MixDVAE on the three test subsets with and without

fine-tuning SRNN in the E-Z step. Similar to the MOT task, for all three datasets, not

fine-tuning SRNN leads to the best overall source separation performance (on all of the

evaluation metrics).

5.7 DISCUSSION ON THE COMPUTATIONAL COMPLEXITY

In this section, we discuss the computational complexity of the MixDVAE algorithm for

both of these two tasks. The proposed method is based on two parts: (i) the pre-training

121

of a DVAE model on a single-source dataset, and (ii) the MixDVAE VEM algorithm for

source tracking. The computational cost for the pre-training stage mainly depends on

the data type and data size of the single-trajectory dataset. To give a general idea, we

measured the average training time required for a single epoch (iteration over the whole

training set) on both the synthetic trajectories dataset for MOT and the WSJ0 dataset for

SC-ASS. The measurement is conducted on an NVIDIA Quadro RTX 8000, in a machine

with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz. The obtained results for differ-

ent data scales as mentioned in Section 4.6.1 is reported in Table 5.6. We have observed

that doubling the size of the training data results in almost a doubling of the training time.

On the other hand, the computation complexity of the MixDVAE algorithm mainly de-

pends on three factors: the number of VEM iterations, the number of sources to track

and separate, and the sequence length. Typically, the performance of MixDVAE exhibits

an initial rapid increase over the VEM iterations, followed by stabilization towards a

plateau. In Fig. 5.2, we plot the evolution of the averaged performance of MixDVAE over

the medium sequence test dataset as a function of the number of VEM iteration (the per-

formance is represented by the MOTA score for the MOT task and by the SI-SDR score

for the SC-ASS task). We observe that for the MOT task, the performance of MixDVAE

has been stabilized from around 10 iterations, whereas for the SC-ASS task, the perfor-

mance has been stabilized from around 20 iterations. In practice, we run the algorithm

for more iterations to guarantee the convergence. Taking computational time optimization

into account, it is possible to identify an optimal number of iterations by applying a grid

search, for a specific task and dataset. To quantify the computational time of the MixD-

VAE algorithm, we compute the averaged processing time for one sequence on the MOT

task, for the three considered values of the sequence length, and for the case of 3 and

6 sources. This average processing time is measured on an NVIDIA Quadro RTX 4000

GPU, in a machine with an Intel(R) Xeon(R) W-2145 CPU@3.70GHz, and it is averaged

on 10 test sequences. The results are reported in Table 5.5. We observe a linear increase

of the computation time as a function of the sequence length. As the number of sources

to track doubles, the computation time exhibits more than a twofold increase. The com-

122 Chapter 5: Application of MixDVAE on SC-ASS

0 10 20 30 40 50 60

0.75

0.76

0.77

0.78

VEM iterations

M
O

TA
 v

al
ue

s

0 10 20 30 40 50 60
9

10

11

12

13

VEM iterations

Fl
ut

e
S
I-

S
D

R
 v

al
ue

s

0 10 20 30 40 50 60

0

2

4

6

8

VEM iterations

S
pe

ec
h

S
I-

S
D

R
 v

al
ue

s

Figure 5.2: Evolution of the performance of MixDVAE as a function of the number of
VEM iterations (MOTA score for the MOT task and SI-SDR scores for the SC-ASS task).

Table 5.5: Averaged processing time per sequence for the MOT task.

Sequence length (frames) 60 120 300
sources 3 6 3 6 3 6

Computation time per sequence (s) 23.01 57.29 45.05 110.41 112.93 272.94

Table 5.6: Pre-training computational cost on different datasets at different scales.

Task Data set Data scale One epoch training time (s)

MOT Synthetic trajectories
Full 15
Half 7.8

Quarter 4.8

SC-ASS WSJ0
Fall 190.8
Half 121.2

Quarter 63

putation complexity can be a bottleneck for the MixDVAE especially for long sequences

with a large number of sources. However, further algorithm and code optimization might

be possible, since we did not focus on this aspect of the problem so far.

5.8 CONCLUSION

In this section, we make a general conclusion of Chapter 3, Chapter 4, and Chapter 5. In

Chapter 3, we introduce MixDVAE, an DPGM designed to model the dynamics of mul-

tiple, jointly observed, sources. MixDVAE involves two main modules: A DVAE model

for capturing the dynamics of each individual source and a discrete latent assignment

variable that assign observations to sources, thus enabling us to form complete trajecto-

123

ries. The model learning process consists of two stages. During the first stage, the same

or different DVAE model(s) is/are pre-trained on the synthetic or natural single-source

trajectory dataset(s) to obtain prior information about the sources dynamics. During the

second stage, the pre-trained DVAE model(s) is/are integrated into the general MixDVAE

model. The entire MixDVAE model is solved using the VI framework with a VEM algo-

rithm that combines the structured mean-field approximation and the amortized inference

principles. The VEM algorithm is run directly on each multi-source test data sequence to

process and the entire method does not require massive multi-source annotated datasets

for training, which are difficult to obtain, especially for natural data. Hence, we consider

it as weakly-supervised, as opposed to the fully-supervised approaches most commonly

used in many multi-source processing applications. We illustrate the versatility of MixD-

VAE by applying it to two distinct scenarios: the MOT task (in Chapter 4) and the SC-

ASS task (in Chapter 5). Experimental results demonstrate that MixDVAE performs well

on both tasks. Specifically, thanks to the strong dynamical modeling capacity of DVAE,

MixDVAE shows to be more efficient than the combination of a linear dynamical model

with the assignment variable. In addition, MixDVAE can generate reasonable predictions

of the source vector even in the absence of observations, resulting in smooth and robust

trajectories, as demonstrated in the MOT task. Our experiments demonstrate the general-

ization capability of MixDVAE trained on a synthetic single-target dataset, and evaluated

in a multiple-target dataset. Finally, we believe that MixDVAE has a very strong poten-

tial for modeling the dynamics of multiple-source systems in general, and can be applied

to various other tasks. However, we acknowledge that MixDVAE also has certain limi-

tations, such as the assumption that each source behaves independently and the lack of

consideration for interactions among them. We leave this as a challenging topic for future

research.

124 Chapter 5: Application of MixDVAE on SC-ASS

CHAPTER 6

UNSUPERVISED SPEECH

ENHANCEMENT WITH DEEP

DYNAMICAL PROBABILISTIC

GENERATIVE MODELS

Progress imposes not only new possibilities

for the future but new restrictions.

— Norbert Wiener

125

126Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

This chapter is based on the following publication:

Xiaoyu Lin, Simon Leglaive, Laurent Girin, and Xavier Alameda-Pineda. “Unsuper-

vised speech enhancement with deep dynamical generative speech and noise models.” In

Proceedings Interspeech Conference, pages 5102-5106, 2023.

6.1 INTRODUCTION

In Section 2.5.3, we provided a brief overview of the background in speech enhancement

(SE) research. In this chapter, we will concentrate on the unsupervised SE methods,

delving deeper into the challenges in this field and presenting a novel unsupervised SE

method.

In the first place, we clarify several terminologies adopted in this dissertation so that

we can make our discussions more efficient. As introduced in Section 2.5.2 and Sec-

tion 2.5.3, conventional supervised SE methods typically rely on a substantial corpus of

paired clean-noisy speech data for training. These datasets are commonly synthetically

generated by summing up pre-recorded clean speech signals with noise signals. How-

ever, as previously highlighted, this training paradigm poses challenges for supervised

SE methods to effectively generalize to real-world scenarios. In our research context,

we define the unsupervised SE methods as approaches that abstain from using aligned

parallel clean-noisy speech data during training. This definition may be arguable, as the

methods presented in Section 2.5.3, which rely solely on clean speech data or utilize un-

paired clean-noisy speech data, still necessitate a clean speech dataset for model training.

Acquiring a clean speech dataset, which needs to be recorded in an anechoic chamber,

generally requires more efforts than obtaining the noisy speech dataset. Nevertheless,

the underlying argument, akin to the one we articulated in Section 3.1 of Chapter 3, is

that we aim to utilize a modest amount (considerably smaller than what supervised SE

methods necessitate) of clean speech dataset for training, while still preserving the robust

generalization ability of the model. In several literature sources [182, 142], this kind of

methods are referred to as semi-supervised. Nonetheless, we find this term also inappro-

127

priate as, in machine learning, semi-supervised learning typically involves using a small

amount of labeled data (paired clean-noisy speech in the case of SE) alongside a large

amount of unlabeled data during training [241]. Another concept worth discussing is that

of weakly supervised learning methods. Weakly supervised learning is a broader umbrella

that mainly encompass three learning configurations with weak supervision: incomplete

supervision, where only a subset of training data is labeled (including the semi-supervised

learning configuration); inexact supervision, where only coarse-grained labels are pro-

vided; and inaccurate supervision, where the provided labels may not always correspond

to the ground-truth [238]. For SE methods that solely rely on clean speech dataset or

unpaired clean-noisy speech dataset for training, we find them on the borderline of be-

ing characterized into the second category of weakly supervised learning methods. After

careful consideration, we opt to categorize all methods that do not use paired clean-noisy

speech data for training as unsupervised methods.

Additionally, as we are interested in the generalization ability of the proposed methods

on test data encompassing noise types and acoustic conditions not encountered during

training, we further divide the unsupervised SE methods into two categories, following

the terminology defined in [22]: the unsupervised noise-dependent (ND) methods and

the unsupervised noise-agnostic (NA) methods. ND methods incorporate noise or noisy

samples in their training process, enabling the model to acquire noise information about

different noise types before testing. In contrast, NA methods exclusively utilize clean

speech signals for training, relying on estimating the noise characteristics at test time for

each noisy speech sequence to be processed. A typical unsupervised NA approach that

has been discussed in 2.5.3 uses a pre-trained VAE as a prior distribution of the clean

speech signal and a NMF model for the noise variance [9, 117, 151, 176]. The NMF

parameters and the VAE latent vector are estimated at test time from the noisy signal and

combined to build a denoising Wiener filter. Further developments in this general line

were proposed in, e.g., [119, 31, 118, 224].

Recently, it was proposed in [22] to replace the VAE by a DVAE [71, 20], yielding

better clean speech modeling capacities by considering the temporal dependencies across

128Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

successive spectrogram frames. The algorithm proposed in [22] was shown to achieve

very competitive performance even when compared to supervised approaches. However,

this algorithm has two main drawbacks. First, the NMF may be a too simple model for

many real-world noise signals, which are poorly described in the spectrogram domain as

a non-negative linear combination of a few spectral templates. Second, at test time, the

inference algorithm, which needs to execute the VEM algorithm for several iterations on

each noisy sequence independently, is highly computation- and time-consuming.

In this part of our PhD work, we aim at both increasing the modeling power of the

noise model and accelerating the inference process. To achieve this, we build on [22]

and propose to replace the NMF noise model with a dynamical DPGM. We have seen in

Chapter 2 that the dynamical DPGMs represent a versatile class of dynamical models for

sequential data generation by leveraging DNNs.1 This proposition is motivated by two

key factors. First, DNNs with purposefully designed architectures are supposed to offer

greater expressiveness compared to the NMF model, enabling improved estimation for

complex noise types, such as those coming from cars, music, baby crying, etc. Second,

employing DNNs as the noise model facilitates both training the noise model and fine-

tuning the clean speech model efficiently on a large dataset using the SGD method. As

we will see, during test time, the inference can be streamlined through a simple forward

pass, bypassing the need for a time-consuming sequence-by-sequence EM algorithm es-

timation, as was the case in [22].

Besides the fact that the proposed method can be seen as an extension of [22], it is

worth noting that it has some connections with MixDVAE, as applied to the SC-ASS

problem in Chapter 5. The main differences lie in the fact that, in this new SE model, we

only pre-train a single DVAE model on a clean speech dataset, as opposed to the MixD-

VAE model, which would pre-train two instances of the DVAE model (or two different

DVAE models) — one on the clean dataset and another on the noise dataset. As we will

see, the parameters of the noise model are directly learned from the noisy speech dataset.

Moreover, this method does not rely on a discrete assignment variable to separate the

1Note that the DVAE used for clean speech modeling also falls within the dynamical
DPGM family, hence the choice of the chapter title.

129

clean speech signal from the noise. Instead, the clean speech signal estimate is obtained

by applying a Wiener filter, build from the DPGM outputs, on the noisy speech signal.

We implement and test the dynamical DPGM noise model with different inputs: the

DVAE latent variable (LV), or the noisy observations (NO), or both (NOLV). Different

model variants employ different architectures; the implementation details will be specified

in 6.3.2. Moreover, these three variants are implemented and tested in both ND (using a

large noisy speech dataset) or NA configurations. Even further, the models trained in

ND configuration can then be fine-tuned on each noisy speech test sequence to process,

in order to get adapted to specific noise types in the test set (i.e., ND followed by noise

adaptation). Experimental results show that the proposed method obtains performance

that is comparable to that of [22], while in the ND configuration, it requires much less

computation time during inference.

6.2 DYNAMICAL DPGM-BASED SE METHOD

In this section, we present our unsupervised SE method using dynamical DPGM-based

speech and noise models.

6.2.1 CLEAN SPEECH MODELING WITH AN RVAE

Similarly to the MixDVAE applied to the SC-ASS problem in Chapter 5, and similarly

to a vast amount of speech enhancement and separation methods, we work in the STFT

domain. Let s1:T = {st}Tt=1 ∈ CF×T denote the STFT spectrogram of the clean speech.

Each vector st = {st,f}Ff=1 ∈ CF is the short-time spectrum at time frame t, and f denotes

the frequency bin. Let z1:T ∈ RL×T denote the associated latent vector sequence, with

latent dimension L ≪ F . As reported in [22], among several tested DVAE models, the

Recurrent Variational AutoEncoder (RVAE) model [116] worked best on the SE task. So,

we also use this model in this work. The RVAE generative model is defined as:

pθs(s1:T , z1:T) =
T∏
t=1

pθs(st|z1:t)p(zt). (6.1)

130Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

For each time frame t, and conditionally to z1:t, st is assumed to follow a circularly-

symmetric zero-mean complex Gaussian distribution [62, 124], same as discussed in

Chapter 5, Section 5.2:

pθs(st|z1:t) = Nc

(
st;0, diag(vθs,t)

)
. (6.2)

In this work, all covariance matrices are assumed to be diagonal and are represented

by the vector of diagonal entries. Here, vθs,t ∈ RF
+ is a function of z1:t and is modeled

with the RVAE decoder (i.e., it is generated with the RVAE decoder DNN, which is an

RNN parametrized by θs). The latent vector zt is assumed to follow a standard Gaussian

prior distribution:

p(zt) = N (zt;0, I). (6.3)

The inference model, i.e. the approximated posterior distribution of RVAE, is defined

as [116]:

qϕz(z1:T |s1:T) =
T∏
t=1

qϕz(zt|z1:t−1, st:T), (6.4)

with zt assumed to follow a (real-valued) Gaussian distribution:

qϕz(zt|z1:t−1, st:T) = N
(
zt;µϕz,t, diag(vϕz,t)

)
, (6.5)

where µϕz,t ∈ RL and vϕz,t ∈ RL
+ are both a function of z1:t−1 and st:T , which is modeled

with the RVAE encoder (i.e., it is generated with the RVAE encoder DNN, which is an

RNN parametrized by ϕz; note that in practice, the squared modulus of the st:T entries are

send to the encoder input instead of the complex-valued STFT coefficients, as discussed

in Chapter 5, Section 5.2).

The RVAE model is pre-trained on a clean speech dataset by maximizing the following

ELBO [116]:

L(θs, ϕz; s1:T) = −
T∑
t=1

Eqϕz

[
dIS(|st|2,vθs,t)

+DKL
(
qϕz(zt|z1:t−1, st:T)||p(zt)

)]
, (6.6)

131

where modulus and exponentiation are element-wise, dIS(·, ·) is the IS divergence [62]

and DKL(·||·) is the KL divergence, which were both already defined in the preceding

chapters.

6.2.2 DYNAMICAL DPGM-BASED NOISE MODEL

Let x1:T = {xt}Tt=1 ∈ CF×T and n1:T = {nt}Tt=1 ∈ CF×T denote respectively the

complex-valued STFT spectrogram of the noisy speech and the noise, which is assumed

additive:

x1:T = s1:T + n1:T . (6.7)

At each time frame t, nt is assumed to follow a circularly-symmetric zero-mean complex

Gaussian distribution:

pθn(nt) = Nc

(
nt;0, diag(vθn,t)

)
, (6.8)

where vθn,t ∈ RF
+ is the noise variance vector. In several previous works, vθn,t was

modeled with NMF, i.e. factorized into the product of two low-rank non-negative matri-

ces. In this work, we model vθn,t with a dynamical DPGM. We propose three different

noise model dependencies: (i) DVAE latent variable (LV), in which vθn,t is a function

of the whole sequence of the DVAE latent vectors, i.e. vθn,t = vθn,t(z1:T). In other

words, in this version, the latent variables are shared between the clean speech and the

noise models; (ii) noisy observations (NO), in which vθn,t is a function of all the past

values of the noisy speech, i.e. vθn,t = vθn,t(x1:t−1); and (iii) both noisy observations

and DVAE latent variables (NOLV), in which vθn,t is a function of all the past values

of the noisy speech as well as the past and present values of the DVAE latent vectors,

i.e. vθn,t = vθn,t(x1:t−1, z1:t). For clarity of presentation, let pt denote the input of the

noise model, i.e. pt = z1:T in LV, pt = x1:t−1 in NOLV, and pt = {x1:t−1, z1:t} in

NOLV. For all model dependencies (NOLV, NOLV, or NOLV), the noise variance vθn,t

is a function of pt that is implemented by a DNN parametrized by θn.

Applying the chain rule and taking into account the conditional dependencies, the

132Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

generative model over the set of variables {x1:T , s1:T , z1:T} is given by:

pθ(x1:T , s1:T , z1:T) =
T∏
t=1

pθn(xt|st,pt)pθs(st|z1:t)p(zt), (6.9)

where

pθn(xt|st,pt) = Nc

(
xt; st, diag(vθn,t(pt))

)
(6.10)

is deduced from Equation 6.7 and Equation 6.8, pθs(st|z1:t) and p(zt) are defined in Equa-

tion 6.2 and Equation 6.3, and θ = θs ∪ θn.

6.2.3 SPEECH ENHANCEMENT WITH THE INFERENCE MODEL

Applying the D-separation principles [24], the posterior distribution corresponding to the

generative model Equation 6.9 factorizes as follows:

pθ(s1:T , z1:T |x1:T) =
T∏
t=1

pθ(st|z1:t,xt,pt)pθ(zt|z1:t−1,x1:T). (6.11)

For each time frame t, pθ(st|z1:t,xt,pt) can be computed in closed form as a complex

Gaussian distribution pθ(st|z1:t,xt,pt) = Nc(st;µθ,t, diag(vθ,t)) (see Appendix A.4.1 for

more details), with

µθ,t =
vθs,t(z1:t)

vθs,t(z1:t) + vθn,t(pt)
xt, (6.12)

vθ,t =
vθs,t(z1:t)vθn,t(pt)

vθs,t(z1:t) + vθn,t(pt)
, (6.13)

where vector multiplication and division are element-wise. Equation 6.12 provides the

clean speech signal linear minimum mean-square-error (LMMSE) estimate ŝt = µθ,t,

which corresponds to the Wiener filter output (and the corresponding time-domain wave-

form is obtained using the inverse STFT).

The distribution pθ(zt|z1:t−1,x1:T) is intractable and cannot be used directly to recur-

sively provide the z1:T estimate. We thus approximate it with the RVAE inference model

133

Figure 6.1: Schematic view of the proposed SE method. The training and test configura-
tions correspond to the two gray boxes depicted on the right side of the figure.

(defined in Section 6.2.1):

pθ(zt|z1:t−1,x1:T) ≈ qϕz(zt|z1:t−1,xt:T). (6.14)

Here, the RVAE encoder, pre-trained on a clean speech signal dataset, takes as input the

noisy speech signal, and must thus be adapted to such kind of input (see the next sub-

section). In the following, we inject Equation 6.14 into Equation 6.11, and the resulting

approximate joint posterior is denoted by pθ,ϕz(s1:T , z1:T |x1:T).

6.2.4 MODEL OPTIMIZATION

We recall that the parameters {θs, ϕz} are learned by pre-training the RVAE on a clean

speech dataset. θs is then fixed during the SE stage, whereas ϕz has to be fine-tuned on the

noisy signal(s), and we also have to estimate the noise model parameters θn. Following the

principles of variational inference presented in Section 2.3, the parameters are optimized

by maximizing the ELBO, which is here defined as:

L(θn, ϕz;x1:T) = Epθ,ϕz

[
log

pθ(x1:T , s1:T , z1:T)

pθ,ϕz(s1:T , z1:T |x1:T)

]
. (6.15)

Given the factorizations Equation 6.9 and Equation 6.11, and the fact that all involved

distributions are Gaussian, Equation 6.15 can be developed as:

L(θn, ϕz;x1:T) = −
T∑
t=1

Eqϕz

[
dIS(|xt|2,vθs,t + vθn,t)

+DKL
(
qϕz(zt|z1:t−1,xt:T)||p(zt)

)]
. (6.16)

As mentioned before, the model can be trained in either NA or ND configuration.

134Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

When trained in NA configuration, the parameters {θn, ϕz} are estimated directly from

the test noisy speech sequence to be enhanced. This is done by optimizing the ELBO

Equation 6.16 independently on each single noisy speech sequence for a certain number

of iterations. Afterwards, the clean speech estimate is computed with Equation 6.12, using

the optimal parameters and latent vectors sampled from the encoder. This configuration

allows the model to adapt to the specific noise patterns of each test sequence, without the

need for any prior knowledge or training data on the noise type. This makes it suitable

for scenarios where the noise type is unknown. When trained in ND configuration, the

model parameters are estimated by optimizing the ELBO Equation 6.16 on a large noisy

speech training set using SGD optimization (we recall that no parallel noisy-clean data is

thus used). Then at test time, the clean speech is computed using Equation 6.12 with a

single forward pass of the model on the noisy test sequence. This results in a much more

time-efficient inference than methods based on an NMF noise model, while still achieving

competitive performance. A schematic view of the proposed method is shown in Fig. 6.1.

6.3 EXPERIMENTAL SETTINGS

6.3.1 DATASETS AND PRE-PROCESSING

We used two datasets to evaluate the proposed method: the WSJ0-QUT dataset introduced

in [116] and reused in [22], and the publicly available VoiceBank-DEMAND (VB-DMD)

dataset [201]. WSJ0-QUT is obtained by mixing clean signals from the Wall Street Jour-

nal (WSJ0) dataset [63] with various types of noise signals from the QUT-NOISE dataset

[41] with three different signal-to-noise ratio (SNR) values: −5, 0 and 5 dB. It contains

12,765 utterances from 101 speakers, 1,026 utterances from 10 speakers and 651 utter-

ances from 8 speakers for model training, validation and test, respectively. VB-DMD is

obtained by mixing clean signals from the VoiceBank (VB) corpus [208] with ten types of

noise from the DEMAND noise dataset [197]. Following [59], we used 10,802 utterances

from 26 speakers for training, 770 utterances from 2 other speakers for validation, and

824 utterances from 2 other speakers for test. The SNR values used for the training set

are 15, 10, 5 and 0 dB, while the SNR values used for the test set are 17.5, 12.5, 7.5, and

135

2.5 dB. For each dataset, we first pre-trained the RVAE model on the clean speech dataset,

i.e. WSJ0 or VB; then we estimated the noise model parameters using the noisy speech

data, either in the NA or ND configuration (see Section 6.2.4).

Before being input into the neural networks, the audio signals are pre-processed as

follows. We compute the STFT with a 64-ms sine window (1,024 samples) and a 75%-

overlap (256-sample shift), resulting in a sequence of 513-dimensional discrete Fourier

coefficients (for positive frequencies). The squared modulus of the STFT coefficients

is computed afterwards. For the RVAE pre-training and the SE model trained in ND

configuration, we first use a voice activity detection threshold of 30 dB to remove silence

portions at the beginning and the end of the signals, and rescale the waveforms in [−1, 1]

before computing the STFT coefficients. And we also split the training utterances into

smaller sequences of length T = 100 frames. At test time, the model is evaluated on

the complete noisy test utterances, which can be of variable length. The SE model in

NA configuration is trained and evaluated directly on each single complete noisy test

utterances.

6.3.2 IMPLEMENTATION DETAILS AND TRAINING SETTINGS

The RVAE architecture closely follows the one used in [22], with the exception of re-

placing the bidirectional LSTM (BLSTM) layers in both the encoder and decoder with

standard LSTM layers, since we use here the causal version of RVAE [116]. The latent

vector dimension was set to L = 16.

The NO noise model is implemented using an LSTM layer that takes as input at time

t the past noisy speech vectors x1:t−1, followed by a MLP layer with a tanh activation

function, except for the output layer, which is linear, and which provides the noise log-

variance vector log vθn,t(pt). The architecture of the NOLV and LV noise model are

similar to that of the NO noise model, except that the NOLV model uses two LSTM

layers, one to encode information from the past noisy speech vectors x1:t−1 and another

one to process the past and present latent vectors z1:t, and the LV noise model uses a

single LSTM layer to encode information from the complete latent vector sequence z1:T .

136Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

For all training processes, we used the Adam optimizer [104] with parameters β1 =

0.9, β2 = 0.99, ϵ = 10−9. For RVAE pre-training and ND training configuration, we

decayed the learning rate (from 5 × 10−4 to 10−8) with a cosine annealing scheduler

[126]. The models are trained in maximum 500 epochs and the validation set is used to

select the best models. During the RVAE pre-training, we applied linear warm-up to the

KL term in Equation 6.6 during the first 20 epochs [184].

6.3.3 BASELINES AND EVALUATION METRICS

We compare our method with both supervised and unsupervised SE baselines. For super-

vised baselines, we considered Open-Unmix (UMX) [189] and MetricGAN+ [58], which

are LSTM-based methods, and CDiffuSE [127] and SGMSE+ [170], which are diffusion-

based methods. For unsupervised baselines, we compared to MetricGAN-U [59], NyTT

[61], and RVAE-VEM [116, 22] (note that RVAE-VEM is the combination of clean speech

RVAE and noise NMF models optimized with a VEM algorithm that was the starting point

of the present work).

As for the SE performance metrics, we used the scale-invariant scale-invariant signal-

to-distortion ratio (SI-SDR) [175] (in dB), the perceptual evaluation of speech quality

(PESQ) score [172] (in [−0.5, 4.5]), and the extended short-time objective intelligibil-

ity (ESTOI) score [195] (in [0, 1]). We also evaluated the computational efficiency of

the inference (denoising algorithm) for RVAE-VEM, SGMSE+ and the proposed method

(in different configurations) using the average real-time factor (RTF), which is the time

required to process 1 second of audio.2

6.4 EXPERIMENTAL RESULTS

6.4.1 COMPARISON OF DIFFERENT VARIANTS UNDER DIFFERENT CONFIGURATIONS

The SE results for different variants of the dynamical DPGM model are reported in Ta-

ble 6.1. We observe that on both of these two datasets, models trained under the U-NA
2All of the RTF values are computed on NVIDIA Quadro RTX 4000 GPU, in a ma-

chine with an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz and averaged on 10 sequences.

137

Table 6.1: SE results for different variants of the dynamical DPGM model. U-NA stands
for unsupervised noise-agnostic and U-ND stands for unsupervised noise-dependent, U-
NDA stands for U-ND training followed by noise adaptation fine-tuning. The best scores
are in bold and the second best scores are underlined.

Pre-train set Train set Test set Model Configuration SI-SDR ↑ PESQMOS ↑ PESQWB ↑ PESQNB ↑ ESTOI ↑
- - Noisy mix. - -2.6 1.83 1.14 1.57 0.50

WSJ0
train

(clean)

WSJ0-QUT
train

(noisy)

WSJ0-QUT
test

RVAE-LV
U-NA 5.4 2.31 1.53 2.01 0.65
U-ND 5.3 2.25 1.53 1.95 0.60

U-NDA 6.2 2.38 1.56 2.07 0.62

RVAE-NO
U-NA 6.0 2.33 1.56 2.04 0.65
U-ND 3.7 2.11 1.37 1.81 0.58

U-NDA 5.8 2.31 1.54 2.02 0.63

RVAE-NOLV
U-NA 5.5 2.31 1.53 2.01 0.65
U-ND 4.9 2.11 1.42 1.83 0.60

U-NDA 6.2 2.29 1.56 2.00 0.62

- - Noisy mix. - 8.4 3.02 1.97 2.88 0.79

VB
train

(clean)

VB-DMD
train

(noisy)

VB-DMD
test

RVAE-LV
U-NA 17.5 3.23 2.39 3.15 0.82
U-ND 17.4 3.24 2.40 3.17 0.81

U-NDA 17.8 3.22 2.38 3.14 0.81

RVAE-NO
U-NA 17.3 3.25 2.40 3.18 0.82
U-ND 16.7 3.03 2.12 2.89 0.79

U-NDA 17.2 3.06 2.18 2.93 0.80

RVAE-NOLV
U-NA 17.5 3.25 2.40 3.18 0.82
U-ND 16.9 3.04 2.14 2.90 0.79

U-NDA 17.4 3.17 2.30 3.07 0.81

configuration achieve good performance. This shows the ability of the proposed model

to adapt to the noise characteristics in the NA configuration. More specifically, in the NA

configuration, the RVAE-NO model performs slightly better than the other two models on

the WSJ0-QUT dataset while the three noise model variants (NOLV, NOLV, NOLV) lead

to very similar performance on the VB-DMD dataset. However, the RVAE-NO model

and RVAE-NOLV model have a slight drop of performance when trained in U-ND con-

figuration. This may be due to the mismatch between train and test data in this U-ND

configuration (different types of noise being used for training and test). In contrast, the

RVAE-LV model reveals very robust when used in the U-ND configuration. This may

be because estimating the noise variance only from the latent vectors, without using the

noisy speech vectors, helps to alleviate the training/test data mismatch issue. It also shows

that by conducting noise adaptation fine-tuning after the U-ND training configuration, the

performance of all the three model variants was greatly improved (over the U-ND con-

figuration) on both of these two datasets. And on the WSJ0-QUT dataset, models trained

under the U-NDA configuration achieve similar or even better (for the NOLV and NOLV

138Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

models) performance than those directly trained under the U-NA configuration.

Table 6.2: SE results compared with baselines. S stands for supervised, U-NA stands
for unsupervised noise-agnostic and U-ND stands for unsupervised noise-dependent. The
best scores are in bold and the second best scores are underlined.

Pre-train set Train set Test set Model Configuration SI-SDR ↑ PESQMOS ↑ PESQWB ↑ PESQNB ↑ ESTOI ↑

- - WSJ0-QUT
test Noisy mix. - -2.6 1.83 1.14 1.57 0.50

- - WSJ0-QUT
test

Wiener filter
(Oracle) - 12.1 3.14 2.56 3.03 0.88

- WSJ0-QUT
train

WSJ0-QUT
test UMX S 5.7 2.16 1.38 1.83 0.63

- WSJ0-QUT
train

WSJ0-QUT
test MetricGAN+ S 3.6 2.83 2.18 2.61 0.60

WSJ0
train - WSJ0-QUT

test RVAE-VEM U-NA 5.8 2.27 1.54 1.98 0.62

WSJ0
train

WSJ0-QUT
train

WSJ0-QUT
test RVAE-LV U-ND 5.3 2.25 1.53 1.95 0.60

- - VB-DMD
test Noisy mix. - 8.4 3.02 1.97 2.88 0.79

- - VB-DMD
test

Wiener filter
(Oracle) - 21.5 3.70 3.39 3.79 0.93

- VB-DMD
train

VB-DMD
test UMX S 14.0 3.18 2.35 3.08 0.83

- VB-DMD
train

VB-DMD
test MetricGAN+ S 8.5 3.59 3.13 3.63 0.83

- VB-DMD
train

VB-DMD
test CDiffuSE S 12.6 - 2.46 - 0.79

- VB-DMD
train

VB-DMD
test SGMSE+ S 17.3 - 2.93 - 0.87

-
VB-DMD

train
+ Extra noise

VB-DMD
test NyTT Xtra U-ND 17.7 - 2.30 - -

- VB-DMD
train

VB-DMD
test MetricGAN-U U-ND 8.2 3.20 2.45 3.11 0.77

VB
train - VB-DMD

test RVAE-VEM U-NA 17.1 3.23 2.48 3.15 0.81

VB
train

VB-DMD
train

VB-DMD
test RVAE-LV U-ND 17.4 3.24 2.40 3.17 0.81

6.4.2 COMPARISON WITH THE BASELINES

As depicted in Table 6.1, the RVAE-LV model exhibits overall better performance com-

pared to the other two variants across all three training configurations. Consequently, we

opt to use the results achieved by the RVAE-LV model trained under the U-ND configu-

ration for comparison with other baseline models. The results are reported in Table 6.2.

Before comparing the performance of different approaches, we make several remarks

about the datasets and the evaluation metrics. First, we observe that all of the methods

achieve higher score on the VB-DMD dataset than on the WSJ0-QUT dataset. This is

139

reasonable because the test noisy sequences of the VB-DMD dataset have higher SNR

than that of the WSJ0-QUT dataset, and the patterns of the added noise are also simpler.

In short, VB-DMD is a “easier” dataset than the WSJ0-QUT dataset. Second, we notice

that there exists a slight inconsistency among these evaluation metrics. For instance,

the MetricGAN+ model achieves remarkable high PESQ scores (the highest among the

evaluated models) on both of these two datasets. However, its SI-SDR scores are notably

low. This inconsistency arises from the distinction between the metrics. Specifically,

the SI-SDR score assesses the time-to-time signal estimation quality, whereas the PESQ

score gauges the global perceptual quality. These two scores are not always correlated.

Given that the MetricGAN+ model directly use the PESQ score as its training objective,

it is unsurprising that it attains a very good PESQ score and a relatively lower SI-SDR

score. Lastly, we included the evaluation scores for the noisy mixture and the oracle

Wiener filter. The term “noisy mixture” denotes the direct assessment of the quality of

the test noisy speech sequences using the corresponding clean speech as reference. On the

other hand, “oracle Wiener filter” signifies the computation of the Wiener filter with the

true clean speech and noise variances and applied to the noisy speech STFT spectrogram,

with the evaluation based on the clean speech as reference. Noisy mixture scores provide

a benchmark for gauging the improvements brought about by the models, while the oracle

Wiener filter can be viewed as an upper bound for methods based on STFT spectrogram

masking.

In terms of model performance, we observe that both the proposed RVAE-LV model

and the RVAE-VEM model [22] achieve very competitive results, especially when com-

pared to the supervised SE methods. Note that both of these two methods have never used

pairs of aligned noisy-clean speech data for training. In comparison to the RVAE-VEM

model, RVAE-LV demonstrates slightly improved results on the VB-DMD dataset but

exhibits slightly inferior performance on WSJ0-QUT dataset. However, the significant

advantage of RVAE-LV over RVAE-VEM lies in its ability to deliver a rapid inference

process in the U-ND configuration, with only minimal performance degradation. Further

discussion on this aspect will be presented in the next subsection. Besides, the ND + noise

140Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

Table 6.3: RTF of different models during inference. The best scores are in bold.

Test set Model Configuration # Iter. ↓ RTF ↓

WSJ0-QUT te.

RVAE-VEM U-NA 300 27.91

RVAE-LV
U-NA 1000 89.42
U-ND - 0.02

U-NDA 190 17.42

VB-DMD te.

SGMSE+ S - 3.39
RVAE-VEM U-NA 100 9.55

RVAE-LV
U-NA 900 81.62
U-ND - 0.02

U-NDA 25 2.32

adaptation configuration enables the model to adapt to specific noise types and improve

performance.

6.4.3 DISCUSSION ON THE COMPUTATIONAL TIME

To evaluate the computational efficiency of different models at test time, we calculated

the RTF for RVAE-VEM, SGMSE+ and the proposed RVAE-LV model across different

configurations. The corresponding values are provided in Table 6.3. Both the RVAE-

VEM model and the RVAE-LV model in the U-ND configuration employ an EM-based

optimization method, with the computational time of these models being proportional to

the required number of iterations during the EM algorithm. This iteration count is also

reported in the table. In general, achieving good performance in the U-NA configuration

is at the price of very high RTF values. In fact, the iteration number of the EM algo-

rithm should be considered as a hyperparameter of the model. And in our experiments,

this value is determined by grid search. It is noteworthy that, to achieve optimal perfor-

mance, the RVAE-LV model requires more iterations than the RVAE-VEM model. This

observation suggests that the LSTM-based noise model is more challenging to converge

than the NMF-based noise model. In contrast, in the U-ND configuration, the inference

process only requires a single forward pass of the trained model, resulting in a much

lower RTF value of 0.02. Additionally, by conducting the noise adaptation fine-tuning

for several iterations (190 iterations on the WSJ0-QUT dataset and 25 iterations on the

VB-DMD dataset), the model’s performance can be further enhanced. This can be viewed

141

as a compromise between computational efficiency and model performance. On the other

hand, due to the time-consuming inverse diffusion process, the state-of-the-art supervised

baseline SGMSE+ has an RTF value that is much higher than the proposed unsupervised

model in the U-ND configuration, while the two methods have similar performance in

terms of SI-SDR (however, the RTF of SGMSE+ remains much lower than the proposed

model in the U-NA and U-NDA configurations).

6.4.4 QUALITATIVE ANALYSIS

By substituting the NMF-based noise model with the DNN-based noise model, one of

our expectations was that the DNN-based noise model could capture more complex noise

patterns and consequently improve the SE performance. However, the results reported in

Table 6.2 indicate that this objective is not achieved. To further investigate the potential

underlying reasons, we conducted a qualitative analysis over two examples.

To gain a deeper understanding of the impact of the choice of the noise model and

training configurations, we conducted a comparative analysis of the SE results. Specifi-

cally, we compared the outcomes achieved by the RVAE-LV method trained under both

U-NA and U-ND configurations with those obtained by the RVAE-VEM method. In Fig-

ure 6.2, we present a challenging example featuring noise from real-life recordings and a

relatively low SNR of 0 dB in the noisy speech. In this case, all three methods—RVAE-

LV under the U-ND configuration, RVAE-LV under the U-NA configuration, and RVAE-

VEM under the U-NA configuration—yield suboptimal results, with SI-SDR values of

4.52 dB, 4.42 dB and 6.85 dB respectively. Notably, the RVAE-LV model under both

configurations performs less effectively than the RVAE-VEM model. Upon inspecting

the estimated noise variance, we observe that the noise patterns learned by the RVAE-LV

model trained under the U-ND configuration are much smoother than those learned by the

NMF model and the RVAE-LV model trained under the U-NA configuration. The pos-

sible reason is that when training on a large dataset, the DNN-based noise model tends

to learn averaged patterns over the whole dataset. When comparing the estimated noise

variance obtained by the RVAE-LV model trained under the U-NA configuration with that

142Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

Ground Truth

Clean Spech NoiseNoisy Speech

RVAE-LV
U-ND

Estimated Clean Spech Variance Estimated Noise VarianceEstimated Clean Speech
With Wiener Filter

RVAE-LV
U-NA

RVAE-VEM
U-NA

Figure 6.2: Example of SE results obtained with different methods. In this example, the
noise type is “restaurant” and the SNR of the noisy speech is 0 dB. Best seen in color.

obtained by the RVAE-VEM model, it seems that the RVAE-LV model learned a more ac-

curate estimation. However, despite this seemingly improved noise estimation, RVAE-LV

under the U-NA configuration exhibits lower SI-SDR scores than the RVAE-VEM model.

This discrepancy may be attributed to the possibility that when the noise model is too

powerful, it retains less information about the clean speech in the estimated result.

In Figure 6.3 we present another simpler example with artificially synthesised speech-

143

Ground Truth

Clean Spech NoiseNoisy Speech

RVAE-LV
U-ND

RVAE-LV
U-NA

RVAE-VEM
U-NA

Estimated Clean Spech Variance Estimated Noise VarianceEstimated Clean Speech
With Wiener Filter

Figure 6.3: Example of SE results obtained with different methods. In this example, the
noise type is “speech-shaped noise” and the SNR of the noisy speech is 5 dB. Best seen
in color.

shaped noise and a higher SNR of 5 dB in the noisy speech. In this case, all three methods

obtain good SE performance, with SI-SDR values of 13.7 dB, 14.8 dB and 11.2 dB re-

spectively. Particularly, RVAE-LV models trained under both NA and ND configurations

achieve higher SI-SDR scores than the RVAE-VEM method.

144Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

Table 6.4: SE results compared with baselines. U-NA stands for unsupervised noise-
agnostic and U-ND stands for unsupervised noise-dependent. The best scores are in bold
and the second best scores are underlined.

Pre-train set Train set Test set Model Configuration SI-SDR ↑ PESQMOS ↑ PESQWB ↑ PESQNB ↑ ESTOI ↑
VB
train - WSJ0-QUT

test RVAE-VEM U-NA 4.3 2.12 1.37 1.84 0.57

VB
train

WSJ0-QUT
train

WSJ0-QUT
test RVAE-LV U-ND 4.3 2.17 1.41 1.85 0.58

WSJ0
train - VB-DMD

test RVAE-VEM U-NA 17.3 3.21 2.41 3.13 0.81

WSJ0
train

VB-DMD
train

VB-DMD
test RVAE-LV U-ND 17.4 3.18 2.21 3.09 0.80

6.4.5 RESULTS ON UNMATCHED PRE-TRAIN/TEST SET

Another motivation for the proposed method is its ability to adapt to noise characteristics

and acoustic conditions not encountered during training. To explore this aspect, we con-

ducted experiments involving unmatched pre-training and testing datasets. Specifically,

we firstly pre-train the RVAE model on the WSJ0 clean speech dataset, and then, train

the noise model and fine-tune the encoder on the VB-DMD training set. Subsequently,

testing was carried out on the VB-DMD test set. We also conducted reverse experiments

(RVAE model pre-trained on the VB dataset, then noise model and fine-tuning of the

encoder trained and tested on the WSJ0-QUT dataset), and the results are reported in Ta-

ble 6.4. Observing the performance on the WSJ0-QUT dataset, we note a slight drop in

performance for both the RVAE-VEM and the RVAE-LV models compared to the scenario

with matched pre-training and testing datasets. These two models achieve relatively sim-

ilar performance, with the RVAE-LV model exhibiting slightly better perceptual scores.

On the VB-DMD dataset, RVAE-VEM maintained its performance, while the perceptual

scores of the RVAE-LV model has slightly dropped.

6.5 CONCLUSION AND FURTHER DISCUSSIONS

In this chapter, we present a new unsupervised SE model that uses a dynamical DPGM

for both speech and noise. We tested three different dependencies for the noise model

(NO, LV, NOLV), as well as three ‘training/testing’ configurations (NA, ND, and ND +

145

noise adaptation). Experiments show that in the NA configuration, our model outperforms

several unsupervised baselines (including RVAE+NMF), and competes well with the su-

pervised baselines. In the ND configuration, our model provides a fast inference process

with minimal performance degradation (especially for RVAE-LV). Furthermore, the ND +

noise adaptation configuration enables the model to adapt to specific noise characters and

further improve performance with much fewer iterations than in the ND configuration.

Additionally, we conducted further analysis from various perspectives to provide deeper

insights into the strengths and limitations of the proposed method.

Here, we make additional discussions about the limitations of this method and potential

directions for improvement. In general, this method is based on the idea of first pre-

training a dynamical DPGM over a clean speech dataset, then leverage the learned prior

information over the clean speech dataset to realize unsupervised SE. The pre-trained

clean speech model is combined with an additional noise model to estimate the clean

speech variance and the noise variance, respectively. These estimated variances are used

to compute the estimated Wiener filter, which is applied to the noisy speech to obtain the

enhanced speech. The parameters of the noise model are learned directly from the noisy

speech. Meanwhile, the encoder of the pre-trained model is fine-tuned to get adapted to

the noisy speech input. The convergence of the training process is guaranteed by fixing the

decoder of the pre-trained model. In the first place, the framework itself has an inherent

limitation: Since the Wiener filter is a real-valued mask, this method completely ignores

the clean speech phase information (the clean speech estimate retains the same phase

values as the noisy speech; note that this limitation is not specific of our unsupervised

DVAE-based approach, it is common to all methods based on the estimation of the speech

and noise power spectrograms to build a Wiener filter). However, it is observed that the

phase information may play an important role in improving the audio quality, and DNN-

based methods using raw waveform audios as input can even surpass the oracle Wiener

filter results [131]. Therefore, one potential direction for improvement is to apply this SE

framework directly in the temporal domain, rather than applying it to STFT spectrograms.

For instance, we can implement the DVAE models with 1D CNNs [203], enabling us

146Chapter 6: Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models

to operate directly within the temporal domain. Secondly, the modeling capability and

generalization ability of the pre-trained clean speech model are crucial for the success of

this method. While DVAEs serve as powerful deep probabilistic generative models for

sequential data, leading to satisfactory SE results, there may be room for improvement by

exploring alternative encoder-decoder based speech modeling architectures. Thirdly, the

selection of the noise model and the approach to learn its parameters are also essential

aspects. In this work, we propose to replace the NMF-based noise model, learned using

the VEM algorithm, with the DNN-based noise model trained with SGD method. We

observe that while the proposed method can accelerate the inference time, it does not

significantly contribute to improve the SE performance. A plausible explanation is that

the training loss defined in Equation 6.16 may not be sufficiently effective in training the

noise model over a large noisy speech dataset. Exploring a more effective unsupervised

learning strategy is also a promising avenue for further research.

CHAPTER 7

SPEECH MODELING WITH A

HIERARCHICAL TRANSFORMER

DYNAMICAL VAE

A computer would deserve to be called

intelligent if it could deceive a human into

believing that it was human.

— Alan Turing

147

148 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

This chapter is based on the following publication:

Xiaoyu Lin, Xiaoyu Bie, Simon Leglaive, Laurent Girin, and Xavier Alameda-Pineda.

“Speech modeling with a hierarchical Transformer dynamical VAE.” In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, pages 1-5, 2023.

A part of this part of my PhD work has been conducted in collaboration with Xiaoyu Bie,

who was another PhD student in the RobotLearn team at Inria at the time of this work, and

is now a post-doc researcher at ParisTech Telecom. For the purpose of transparency, I clar-

ify the contributions as follows. Xiaoyu Bie conceived the seminal idea of HiT-DVAE and

developed the initial implementation code. In his own PhD work, he applied HiT-DVAE

to 3D human motion data modeling. I re-implemented the code completely, conceived

the idea of LigHT-DVAE, conducted the experiments on speech signals presented in the

above paper and in this chapter, obtained all the experimental results reported in Table

7.1, Table 7.2, Figure 7.3 and Table 7.3, drafted the initial version of the above paper,

participated in the paper refinement and went through all the process related to the pub-

lication. As a complement of information, I can add that Xiaoyu Bie has incorporated a

portion of the results presented in Table 7.1, Figure 7.3, and Table 7.3, as well as some of

the content of the above paper, into his PhD thesis manuscript.

7.1 INTRODUCTION

In Section 2.2.2, we introduced the DVAEs, which are a family of DPGMs that extends the

VAE to model a sequence of observed data with the help of a sequence of latent vectors.

In Chapter 3, 4, 5, and 6, we presented the applications of DVAEs on various unsuper-

vised audio and video tasks. Owing to their flexibility and high generalization ability,

DVAEs have demonstrated significant success in handling audio and visual tasks involv-

ing sequential data. In the majority of the DVAEs presented in the literature, temporal

dependencies within each sequence and across two sequences are modeled using RNNs.

RNNs are very classical deep neural network architectures for capturing temporal depen-

dencies within sequential data. They have achieved considerable success across various

149

tasks. Nevertheless, the use of RNNs in DVAEs also introduces certain challenges, with a

common issue being the mismatch between training and test conditions. Indeed, the com-

monly adopted configuration for RNN training is to use the ground-truth past observed

vectors s1:t−1 in the generative model, a training strategy often referred to as teacher-

forcing [219]. However, at test/generation time, we can only use the previously generated

values ŝ1:t−1 to generate the current one. This generally results in large accumulated

prediction errors along the sequence. Directly training an RNN in the generation mode

is also difficult. To remedy this problem, scheduled sampling can be adopted, i.e., the

ground truth past vectors s1:t−1 are progressively replaced with the previously generated

ones ŝ1:t−1 along the training iterations [14]. This strategy was successfully adopted for

the training of autoregressive (AR) DVAEs, i.e. DVAEs with a recursive structure on the

observed sequence s1:T [71]. However, this requires a well designed sampling scheduler

to guarantee the prediction performance. Additionally, RNNs are also known to be poorly

suited for parallel computation and are prone to issues like exploding and vanishing gra-

dients, particularly when dealing with long sequences [108]. The sequential computation

characteristrics of RNNs also limit their capabilities to be trained on large datasets.

Replacing RNNs with Transformers [207] for sequential modeling has become a new

trend in both natural language processing, e.g., [45], and computer vision, e.g., [48]. In

contrast to the recursive computation in RNNs, the Transformers architecture uses self-

attention modules to capture temporal correlations within the input sequences of both the

encoder and the decoder. Additionally, the correlations between the output sequence of

the encoder and the input sequence of the decoder are modeled using a cross-attention

module (See Section 2.4.3 for explanations of the attention mechanism). The incorpora-

tion of attention mechanisms empowers Transformers to effectively learn more flexible

dependencies within the sequence, facilitating the modeling of complex and long-term

correlations. Furthermore, the holistic attention architecture of Transformers aids in re-

solving the non-parallel computation constraints and addressing challenges related to ex-

ploding and vanishing gradients encountered in RNNs. In principle, replacing RNNs with

Transformers in DVAEs can also benefit the probabilistic modeling of temporal depen-

150 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

dencies between the observed and latent sequences. Following this idea, the hierarchical

Transformer dynamical variational auto-encoder (HiT-DVAE) model proposed in [21] in-

tegrates a DVAE with Transformers. In [21], this model has been applied to 3D human

motion generation. The HiT-DVAE model demonstrates robust sequential data modeling

capabilities and attained competitive performance in this challenging task.

In the present PhD work, we apply the HiT-DVAE model for speech signal modeling.

Additionally, we propose an improved version of HiT-DVAE, named LigHT-DVAE. The

LigHT-DVAE model shares the same probabilistic model with HiT-DVAE but differs in

the implementation of the dependencies. More specifically, LigHT-DVAE reduces the

number of parameters by sharing the parameters of the decoders of the original HiT-

DVAE model. Experimental results show that we achieve very competitive results in

the speech analysis-resynthesis task. Furthermore, we investigate the modeling capacity

of LigHT-DVAE compared to other DVAEs through extensive ablation studies on the

model structure. In particular, we show that the special structure of both HiT-DVAE and

LigHT-DVAE makes them robust to using teacher-forcing at training time, which largely

simplifies the training procedure compared with other AR DVAEs.

7.2 PROBABILISTIC MODEL OF HIT-DVAE

The HiT-DVAE model is a DVAE in which the temporal dependencies between and within

the observed and latent sequences are implemented with Transformers instead of RNNs

[21]. In this section, we present the probabilistic model of HiT-DVAE. We first present

the most general formulas and subsequently provide specific distributions when applying

the HiT-DVAE model for speech signal modeling. In the context of speech modeling,

we work with the STFT of speech waveforms, denoted as s1:T ∈ CF×T . Each vector

st = {sf,t}Ff=1 of the sequence is the short-time complex-valued spectrum at time frame

t, and f denotes the frequency bin.

151

7.2.1 GENERATIVE MODEL

In the present context of speech signal modeling, s1:T is the observed data sequence (as

opposed to a latent vector sequence in Chapter 5, where it was the speech signal to track

and separate from an observed mixture). In the HiT-DVAE model, two kinds of latent

variables are introduced: a sequence of latent vectors z1:T ∈ RLz×T used to capture the

dynamical properties of the observed sequence, and a time-independent latent variable

w ∈ RLw , defined for a whole speech utterance (typically a complete sentence from a

given speaker), intended to encapsulate high-level features. These features may include,

for example, the speaker ID or emotional state.1

The generative model of HiT-DVAE writes:

pθ(s1:T , z1:T ,w) = pθw(w)
∏T

t=1
pθs(st|s1:t−1, z1:t,w)pθz(zt|s1:t−1, z1:t−1,w), (7.1)

where θ = θs ∪ θz ∪ θw. In general, the observed vector at each time step is supposed to

follow a Gaussian conditional distribution with a diagonal covariance matrix:

pθs(st|s1:t−1, z1:t,w) = N
(
st;µθs,t, diag(vθs,t)

)
. (7.2)

As already discussed and implemented in chapter 5, in the context of statistical au-

dio/speech processing, the STFT coefficient at each time-frequency bin st,f are assumed

to follow a circularly-symmetric zero-mean complex Gaussian distribution [62, 124, 72].

The STFT coefficients at different frequency bins are assumed to be independent. The

conditional distribution of st in Equation 7.1 thus writes:

pθs(st|s1:t−1, z1:t,w) = Nc

(
st;0, diag(vθs,t)

)
. (7.3)

In this work, all covariance matrices are assumed diagonal and are represented by the

vector of diagonal entries. Here, vθs,t ∈ RF
+ depends on the variables {s1:t−1, z1:t,w}.

Note that in practice, HiT-DVAE will input speech power spectrogram, i.e., the squared

1In the above-mentioned human motion generation application, it could be the motion
class.

152 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

modulus of s1:t−1, instead of the complex-valued STFT coefficients themselves, also as

what we have discussed in Chapter 5. The latent vector zt is assumed to follow a (real-

valued) Gaussian distribution:

pθz(zt|s1:t−1, z1:t−1,w) = N
(
zt;µθz,t, diag(vθz,t)

)
. (7.4)

The mean and variance vectors µθz,t ∈ RLz and vθz,t ∈ RLz
+ both depend on {s1:t−1, z1:t−1,w}.

As for the latent vector w, it is assumed to follow a standard Gaussian prior:

pθw(w) = N (w;0, I). (7.5)

7.2.2 INFERENCE MODEL

The HiT-DVAE inference model approximates the intractable exact posterior distribution

of the latent sequence and is defined as:

qϕ(z1:T ,w|s1:T) = qϕw(w|s1:T)
∏T

t=1
qϕz(zt|s1:T ,w), (7.6)

with ϕ = ϕw ∪ ϕz. The conditional distributions of w and zt are defined as:

qϕw(w|s1:T) = N
(
w;µϕw , diag(vϕw)

)
, (7.7)

qϕz(zt|s1:T ,w) = N
(
zt;µϕz,t, diag(vϕz,t)

)
, (7.8)

and where µϕw ∈ RLw and vϕw ∈ RLw
+ depend on s1:T , and µϕz,t ∈ RLz and vϕz,t ∈ RLz

+

depend on {s1:T ,w}.

7.2.3 OPTIMIZATION

The parameters of both the encoder ϕ = ϕw ∪ ϕz and the decoder θ = θs ∪ θz ∪ θw are

optimized by maximizing the ELBO, which is defined as

L(θ, ϕ; s1:T) = Eqϕ(z1:T ,w|s1:T)

[
log

pθ(s1:T , z1:T ,w)

qϕ(z1:T ,w|s1:T)

]
, (7.9)

153

Sampling

Positional
Encoding

Encoder

Input
embedding

Multi-Head
Attention

Layer
Norm

Feed
Forward

Linear

Decoders

Positional
Encoding

 s1:T

Concatenation and
repeated

z1:T
w

s0:T−1

Shifted right

qϕz
(zt |s1:T, w)

z1:T

pθs
(st |s1:t−1, z1:t, w)

Q

K
V

Layer
Norm

Input
embedding

Multi-Head
Attention

Layer
Norm

Layer
Norm

Layer
Norm

Feed
Forward

Multi-Head
Attention

Causal Mask Causal Mask

Input
embedding

Linear

Positional
Encoding

Concatenation and
repeated

s0:T−1
w

z0:T−1

Shifted right

Q

K
V

Input
embedding

Multi-Head
Attention

Layer
Norm

Layer
Norm

Layer
Norm

Feed
Forward

Multi-Head
Attention

Causal Mask Causal Mask

Input
embedding

Linear

pθz
(zt |s1:t−1, z1:t−1, w)

Feature
extraction

LSTM

qϕw
(w |x1:T)

Sampling
And repeating

Concatenation

w

Figure 7.1: HiT-DVAE model architecture.

over a training speech dataset. In the context of speech modeling, by injecting Equa-

tion 7.1, Equation 7.3, Equation 7.4, Equation 7.5, Equation 7.6, Equation 7.7 and Equa-

tion 7.8 into Equation 7.9, the ELBO can be developed as:

L(θ, ϕ; s1:T) = DKL(qϕw(w|s1:T) ∥ pθw(w))

−
T∑
t=1

Eqϕzqϕw

[
dIS(|st|2,vθs,t)

+DKL(qϕz(zt|s1:T ,w) ∥ pθz(zt|s1:t−1, z1:t−1,w))
]

(7.10)

where dIS(·, ·) is the IS divergence [62], DKL(·||·) is the KL divergence, as previously

defined in Chapter 5. And the modulus square function is applied element-wise.

7.3 MODEL ARCHITECTURE OF HIT-DVAE AND LIGHT-DVAE

We note that there exist various ways to implement the probabilistic model defined in

Section 7.2 using the Transformer architecture. In this section, we present the specific

implementation of HiT-DVAE and the adaptations made in LigHT-DVAE. The overall

architecture of HiT-DVAE is illustrated in Figure 7.1.

154 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

7.3.1 HIT-DVAE ENCODER

The HiT-DVAE model is constructed based on the original Transformer architecture [207],

containing both an encoder and a decoder. The encoder is used to compute the parameters

of the inference model distributions. It takes the observed sequence s1:T as input. After

passing through the feature extraction layers, it is then processed by an LSTM to compute

µϕw and vϕw , which are the parameters of the distribution qϕw(w|x1:T). We only retain the

LSTM output at the last time index T , since it contains all information on the complete

sequence s1:T . As discussed in Section 2.3.5, the expectations with respect to the approx-

imated posterior distribution in the ELBO are estimated using the Monte-Carlo method.

The latent variable w is sampled employing the reparametrization trick. The obtained w

is repeated for T times and concatenated with the extracted observed sequence features.

After passing through the input embedding layer and incorporating positional encodings

[207], the inputs traverse the Transformer encoder layers. Each encoder layer consists of

a multi-head self-attention (MHSA) sub-module and a feed-forward (FF) sub-module, see

Figure 7.1 top. Layer normalization (LN) and residual connections are also applied, as

in the original Transformer introduced in Section 2.4.3. To enhance the model capacity,

multiple encoder layers can be stacked. The MHSA module is the essential component for

extracting temporal correlations within the input sequence. It is important to note that in

the MHSA module of the encoder layers, no masks are added. Consequently, at any time

frame t, the query has access to the keys and values of the entire sequence, consistent with

the temporal dependencies specified in Equation 7.8. In short, the HiT-DVAE encoder in

non-causal. The output of the last Transformer encoder layer will finally pass through a

linear layer to obtain the parameters µϕw,t and vϕw,t for the distributions qϕz(zt|x1:T ,w),

from which we can sample the latent variables z1:T using cascaded reparametrization

tricks.

7.3.2 HIT-DVAE DECODER

HiT-DVAE includes two decoders: one for computing the parameters of the distribu-

tions pθs(st|s1:t−1, z1:t,w) and the other for computing the parameters of the distributions

155

pθz(zt|s1:t−1, z1:t−1,w), see Figure 7.1 bottom. For the decoder to generate the conditional

distributions of st, the model takes as input the concatenation of z1:T and the replicated

sampled value of w. Input embedding layers and positional encodings are employed

similarly to the encoder. Following the standard Transformer decoder structure, in each

of the stacked decoder layers, three sub-modules are implemented, namely an MHSA, a

multi-head cross-attention (MHCA) module, and an FF module. In the MHSA module,

the queries are the outputs of the MHSA module applied over the input sequence, i.e.,

the concatenated vectors of z1:T and w, while the keys and values are the embeddings

of the right-shifted observed sequence s0:T−1. The MHSA module is used to extract the

inner correlations within the input sequence of the decoder (concatenation of z1:T and w),

while the MHCA module is used to exploit the dependencies between the input sequence

of the decoder and the sequence s0:T−1. In order to respect the temporal dependencies in

Equation 7.3, causal masks are applied in both the MHSA module and the MHCA mod-

ule to prevent access to information from the future, and preserve the causal nature of the

generation process.

For the decoder to generate the conditional distributions of zt, the model takes as input

the concatenation of the right-shifted sequence s0:1−T and the replicated sampled value

of w. The same model structure is adopted as in the decoder for st, except that in the

MHCA module, the queries are the outputs of the MHSA module applied over the input

sequence, i.e., the concatenated vectors of s0:1−T and w, while the keys and values are the

embeddings of the right-shifted latent vectors z0:T−1.

7.3.3 DISTINCTIONS WITH THE ORIGINAL TRANSFORMERS ARCHITECTURE

We emphasize several notable differences in the HiT-DVAE architecture compared to the

original Transformers: (a) There are two decoders working in parallel: one to compute the

parameters of Equation 7.2 and one to compute the parameters of Equation 7.4; (b) The

output of the encoder and decoders are distribution parameters instead of ‘deterministic’

data representations in the conventional use of the Transformers; (c) The output target of

the first decoder is the input data s1:T , indicating that the model is trained to reconstruct

156 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

pθz
(zt |s1:t−1, z1:t−1, w)

Sampling

Positional
Encoding

Encoder

Input
embedding

Multi-Head
Attention

Layer
Norm

Feed
Forward

Linear

 s1:T

qϕz
(zt |s1:T, w)

z1:T

Layer
Norm

Feature
extraction

LSTM

qϕw
(w |x1:T)

Sampling
And repeating

Concatenation

w

Input
embedding

Linear

Input
embedding

Multi-Head
Attention

Multi-Head
Attention

Layer
Norm

Layer
Norm

Layer
Norm

Feed
Forward

Decoder

Positional
Encoding

Concatenation or
and repeated

z1:T z0:T−1
w s0:T−1

Shifted right

pθs
(st |s1:t−1, z1:t, w)

or

Q

K

V

Causal Mask Causal Mask

Figure 7.2: LigHT-DVAE model structure.

the input sequence rather than generate a different sequence, as commonly seen in re-

gression or machine translation problems; (d) A global latent variable w is introduced to

extract sequence-level features; (e) In the MHCA module of the decoder, to generate the

distribution parameters of st, the role of z1:T (encoder output) and s0:T−1 (decoder output)

as source information for the queries and keys/values, respectively, is inverted compared

to the conventional Transformer as presented in Section 2.4.3. Points (a), (b) and (c) are

inherent to the DVAE framework. Point (d) is a model design choice (see Section 7.2.1).

Point (e) stands as a crucial choice to mitigate the accumulated error issues arising from

the teacher-forcing training strategy, as introduced at the beginning of this chapter. A

comprehensive justification of this choice will be provided in Section 7.5.2.

7.3.4 LIGHT-DVAE ADAPTATIONS

We observe from Equation 7.2 and Equation 7.4 that the generative distributions of st and

zt share very similar temporal dependencies across the sequences of s and z. The key

distinction lies in the fact that the generation of st is contingent upon both the past and

current values of z, whereas the generation of zt relies solely on the past values of z. In

HiT-DVAE, two decoders are employed to model the sequential dependencies of these

two generative distributions separately. Nevertheless, we would like to explore if these

two distributions can share the sequential dependency implementations so that we can use

a single decoder for the generative model. This can help to reduce the overall number of

model parameters and make the model more compact and easy to train. Therefore, we

157

propose the LigHT-DVAE model, which uses a single decoder instead of two decoders

to generate the parameters of both Equation 7.2 and Equation 7.4. The decoder takes as

input either the concatenation of z1:T and the repeated values of w (for the generation

of st) or the concatenation of z0:T−1 and the repeated values of w (for the generation of

zt). The queries of the MHCA module of the decoder is the output of the MHSA module

applied over the input sequence, while the keys and values are the embeddings of s0:T−1.

The model architecture of LigHT-DVAE is illustrated in Figure 7.2.

7.4 EXPERIMENTAL SETTINGS

We conducted a set of experiments to evaluate the efficiency of HiT-DVAE and LigHT-

DVAE for speech signal modeling. In this section, we first describe the experimental

settings that we used, and in the next section we will provide the experimental results.

7.4.1 DATASETS AND PRE-PROCESSING

The experiments are conducted on two datasets: the Wall Street Journal (WSJ0) dataset

[63] and the Voice Bank (VB) corpus [208]. The WSJ0 dataset is composed of 16-kHz

speech signals, with three subsets: si tr s, si dt 05 and si et 05, used for model training,

validation and test, and containing 12,765, 1,026 and 651 utterances respectively. The VB

dataset contains a training set with 11,572 utterances performed by 28 speakers and a test

set with 824 utterances performed by 2 speakers. We follow [60] to choose two speakers

(p226 and p287) from the training set for validation, which contains 770 utterances, and

use the leftover 26 speakers for training.

In all experiments, the raw audio signals are preprocessed in the following way. First,

the silence at the beginning and end of the signals is cropped by using a voice activity

detection threshold of 30 dB. Then, the waveform signals are normalized so that their

maximum absolute value is one. The STFT is computed with a 64-ms sine window (1024

samples) and a 75%-overlap (256 samples hop length), resulting in a sequence of 513-

dimensional discrete Fourier coefficients (for positive frequencies). Finally, the power

magnitude of the STFT coefficients is computed. We set the sequence length of each

158 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

STFT spectrogram to T = 150 (corresponding to speech segments of 2.4s) for WSJ0 and

T = 100 (corresponding to speech segments of 1.6s) for VB. At test time, the model is

evaluated on the complete test utterances, which can be of variable length.

7.4.2 IMPLEMENTATION DETAILS AND TRAINING SETTINGS

The Transformer-based encoder and decoders in both HiT-DVAE and LigHT-DVAE are

composed of 4 identical layers as described in Section 7.3.1 and Section 7.3.2. All input

vectors are embedded into vectors of dimension dmodel = 256, which is the size for all

multi-head attention blocks. In practice, we applied single-head attention because we

found that using multi-head attention decreased the performance in our experiments. All

feed-forward blocks in the Transformer layers consist of two dense layers with size 1024

and 256. The latent dimension Lz and Lw are set to 16 and 32, respectively.

7.4.3 BASELINES

We compare HiT-DVAE and LigHT-DVAE with the basic VAE and three other DVAE

models: The Deep Kalman Filter (DKF) [109], the Recurrent Variational AutoEncoder

(RVAE) [116], and the stochastic recurrent neural network (SRNN) [55]. As HiT/LigHT-

DVAE, SRNN is an AR model that uses s1:t−1 to generate st. DKF and RVAE are not

AR. DKF generates st from zt and there is a dynamical model on zt only, whereas RVAE

generates st ‘directly’ from z1:t (we use the causal version of RVAE; see [116]). As

mentioned in the introduction, an AR model can be trained either in teacher-forcing (TF)

mode or in scheduled-sampling (SS) mode. In our experiments, SRNN is trained in both

modes, while HiT/LigHT-DVAE are only trained in the teacher-forcing mode. Except for

that, all models are trained with the same settings described in Section 7.4.2.

7.4.4 EVALUATION METRICS

We evaluate the average speech analysis-resynthesis performance on the test set (in gen-

eration mode for AR models) using four evaluation metrics: The root mean squared error

(RMSE), the scale-invariant signal-to-distortion ratio (SI-SDR) [175] in dB, the percep-

tual evaluation of speech quality (PESQ) score [172] (in [−0.5, 4.5]), and the extended

159

Table 7.1: Speech spectrograms analysis-resynthesis results.

Dataset Model RMSE ↓ SI-SDR ↑ PESQ ↑ ESTOI ↑

WSJ0

VAE 0.040 7.4 3.28 0.88
DKF 0.037 8.3 3.51 0.91

RVAE 0.034 8.9 3.53 0.91
SRNN (SS) 0.036 8.7 3.57 0.91
SRNN (TF) 0.061 2.6 2.53 0.76
HiT-DVAE 0.031 10.0 3.52 0.91

LigHT-DVAE 0.030 10.1 3.55 0.91

VB

VAE 0.052 8.4 3.24 0.89
DKF 0.048 9.3 3.44 0.91

RVAE 0.050 8.9 3.39 0.90
SRNN (SS) 0.044 10.1 3.42 0.91
SRNN (TF) 0.102 -0.1 2.15 0.75
HiT-DVAE 0.039 11.4 3.60 0.93

LigHT-DVAE 0.038 11.6 3.58 0.93

short-time objective intelligibility (ESTOI) score [195] (in [0, 1]). We also evaluate the

average generation performance via the Fréchet Deep Speech Distance (FDSD) proposed

in [25]. FDSD is a quantitative metric for speech signals generative models. It relies

on speech features extracted with the pre-trained speech recognition model DeepSpeech2

[3].

7.5 EXPERIMENTAL RESULTS

7.5.1 SPEECH SPECTROGRAMS ANALYSIS-RESYNTHESIS RESULTS

The speech analysis-resynthesis task aims at reconstruct the speech signal from the learned

latent representations. In our experimental context, the HiT-DVAE and LigHT-DVAE

models will input the squared magnitude of the speech STFT spectrogram, as is done in

Chapter 5 and Chapter 6, and output the reconstructed squared magnitude of the spectro-

gram. Nevertheless, to compute the PESQ and the ESTOI scores, we need to reconstruct

the waveform of the speech. To achieve this, we combined the reconstructed magnitude

of the spectrogram with the phase of the original speech signal.

The speech analysis-resynthesis results on both the WSJ0 dataset and the VB dataset

are reported in Table 7.1. On the WSJ0 dataset, HiT-DVAE and LigHT-DVAE outperform

160 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

the other DVAE models for all metrics, except for PESQ (SRNN (SS) is slightly better)

and ESTOI (the five models are on par). On the VB dataset, HiT/LigHT-DVAE outper-

form all other DVAE models on all metrics. As AR models, even if HiT/LigHT-DVAE

are trained in teacher-forcing mode, they still keep very robust performance when tested

in generation mode. In contrast, SRNN (TF) trained in teacher-forcing mode leads to

a notable drop of performance compared to SRNN (SS) trained in scheduled-sampling

mode. Finally, the experimental results show that sharing the parameters of the decoders

for s and z in LigHT-DVAE slightly increases the performance compared to HiT-DVAE.

At the same time, it reduces the number of model parameters from 21.75 M to 17.46 M.

7.5.2 ABLATION STUDIES ON MODEL STRUCTURES

To try to explain why HiT/LigHT-DVAE are robust to the teacher-forcing training mode,

we performed several ablation studies on the models structure on the VB dataset. As

explained in Section 7.3.3, different to the original Transformer decoder, the queries to

decode st in HiT/LigHT-DVAE are computed from z1:t instead of s1:t−1. In a first ablation

experiment, we invert the role of the queries and the keys/values when decoding st, i.e.,

we swap the decoder inputs z1:t and s1:t−1. the resulting models are denoted with “Inv-

s”. The models are always trained in the teacher-forcing mode. Table 7.2 reports the

evaluation results when using generated or ground-truth s1:t−1 to decode st, in the “GEN”

and “GT” rows respectively.

Although the models in the Inv-s configuration achieve very good results when trained

in TF mode and evaluated with GT values of s1:t−1 (i.e. no train/test mismatch), their

performance notably drops when evaluating in GEN mode (i.e. train/test mismatch; for

example, we observe a drop from 11.4 to 3.8 dB SI-SDR for HiT-DVAE-Inv-s). We be-

lieve that this lack of robustness to a mismatch between the training and test modes is

mainly caused by the residual connections on the queries in the original Transformer de-

coder architecture (which are highlighted in bold in Figure 7.1 and Figure 7.2). Indeed, the

presence of residual connections in the decoders emphasizes the reliance of the output on

information from the queries rather than that from the keys and values in the MHCA mod-

161

Table 7.2: Speech spectrograms analysis-resynthesis results: Ablation studies on the
HiT/LigHT-DVAE models structure.

Test s1:t−1 Model RMSE ↓ SI-SDR ↑ PESQ ↑ ESTOI ↑

GEN

HiT-DVAE 0.039 11.4 3.60 0.93
HiT-DVAE-Inv-s 0.079 3.8 2.61 0.75

HiT-DVAE-Inv-s-NRC 0.067 5.8 2.68 0.78
LigHT-DVAE 0.038 11.6 3.58 0.93

LigHT-DVAE-Inv-s 0.079 3.9 2.58 0.75
LigHT-DVAE-Inv-s-NRC 0.068 5.7 2.63 0.78

GT

HiT-DVAE 0.038 11.5 3.60 0.93
HiT-DVAE-Inv-s 0.038 11.4 3.32 0.90

HiT-DVAE-Inv-s-NRC 0.067 5.8 2.68 0.78
LigHT-DVAE 0.038 11.7 3.59 0.93

LigHT-DVAE-Inv-s 0.040 10.9 3.29 0.89
LigHT-DVAE-Inv-s-NRC 0.068 5.7 2.63 0.78

ule. In the Inv-s configuration, s1:t−1 is employed to compute the queries and the residual

connections make the prediction of st rely directly on the preceding vectors s1:t−1. This

is not the case in the ‘regular/original’ HiT/LigHT-DVAE models where z1:t−1 is used to

compute the queries from which residual connections start. This forces the prediction of st

to rely more on z1:t−1 than s1:t−1, which explains the better generalization of HiT/LigHT-

DVAE compared to HiT/LigHT-DVAE-Inv-s. This structural aspect is very important in

the present context of speech modeling, because adjacent speech spectrogram frames are

much more correlated than discrete tokens in natural language processing, the original ap-

plication domain of Transformers. To confirm this interpretation, we further removed the

residual connections in the decoder of st in the Inv-s configuration (this new configuration

is referred to as Inv-s-NRC, NRC standing for ‘no residual connection’). As a result, the

performance slightly increased compared to the Inv-s configuration in the GEN test mode,

but it remains much below that of the original HiT/LigHT-DVAE. Also, the performance

in the Inv-s-NRC configuration is the same when evaluated in GEN mode and GT mode,

confirming that the generalization problem in the Inv-s configuration was due to the use

of s1:t−1 to compute the queries from which residual connections start. Overall, this abla-

tion study experimentally showed the importance of the architectural design made in the

HiT/LigHT-DVAE models for the modeling of highly-correlated sequences of continuous

162 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

Figure 7.3: Speech re-synthesis results for two example speech signals with and without
swapping w. In the first column, GT s1, recon s1 w1, recon s1 w2 represent the ground
truth spectrogram of s1, the spectrogram re-synthesised from z1, w1, and the spectrogram
re-synthesised from z1, w2, respectively. Similar notations apply to s2 in the second
column.

data such as speech spectrograms.

7.5.3 INTERPRETABILITY OF THE GLOBAL LATENT VARIABLE

As described in Section 7.2.1, the latent variable w is designed to capture sequence-

level features such as the speaker identity. We conducted tests to better understand the

information actually embedded in w. Specifically, we swapped the w value encoded

from two different speech sequences –one by a female speaker and one by a male speaker–

before resynthesis, similarly to what was done in [91]. The results are shown in Figure 7.3.

163

Table 7.3: Speech spectrograms generation results.

Model FDSD ↓
VAE 70.92 ± 0.44
DKF 32.78 ± 0.28

RVAE 45.75 ± 0.11
SRNN (SS) 25.28 ± 0.19
SRNN (TF) 25.53 ± 0.13
HiT-DVAE 22.50 ± 0.26

LigHT-DVAE 29.22 ± 0.26

VB Test (exact phase) 4.11 ± 0.14
VB Test (Griffin-Lim) 4.11 ± 0.15

We observe that the F0 range of the two spectrograms also swapped, indicating that w

encodes the speaker or at least the speaker genre.

7.5.4 SPEECH SPECTROGRAMS GENERATION RESULTS

In addition to the above speech analysis-resynthesis experiments, we also evaluated the

models performance on the unconditional speech spectrogram generation task via FDSD

scores. To compute these scores, we generated 10,240 1.6-s speech signal samples from

each model. The DVAE models generate power spectrograms, from which we deduced

magnitude spectrograms. We then used the Griffin-Lim algorithm [79] to reconstruct the

corresponding phase spectrograms, and then generate the waveform signals with inverse

STFT. We used 1.6-s utterances from the VB training set as the reference set to compute

the FDSD scores. Finally, in order to have a reference FDSD score, we also computed

the FDSD on the VB test set, with exact original phase or phase reconstructed by the

Griffin-Lim algorithm. As shown in Table 7.3, HiT-DVAE outperforms the other DVAE

models on this generation task. This is a new result, since HiT-DVAE was never used

before for speech modeling and generation. It can also be seen that the AR DVAE models

(HiT/LigHT-DVAE and SRNN) generally have a better generation performance than the

non-AR DVAE models.

Besides, we observe that despite the similarity in analysis-resynthesis between LigHT-

DVAE and HiT-DVAE results across all metrics, LigHT-DVAE exhibits inferior uncon-

164 Chapter 7: Speech Modeling with a Hierarchical Transformer Dynamical VAE

ditional speech generation abilities compared to the HiT-DVAE model. We hypothesize

that this discrepancy may arise because, during speech analysis-resynthesis, the genera-

tive model of z was not utilized (the signals were re-synthesised from the z values ob-

tained from the encoder). Given that the generative model of s is well-learned for both

HiT-DVAE and LigHT-DVAE, they exhibit similar performance. In contrast, for speech

generation, z is derived from the generative model of z. In LigHT-DVAE, this portion of

the networks is shared with the generative model of s, potentially impacting its perfor-

mance compared to networks trained separately.

7.6 CONCLUSION

In this work, we employed the HiT-DVAE model from [21] and its new variant LigHT-

DVAE for the analysis-resynthesis and unconditional generation of speech signals. Our

experiments showcase the robust modeling capabilities of HiT/LigHT-DVAE on speech

spectrograms, emphasizing their resilience to the mismatch between the teacher-forcing

mode used during training and the generation mode used during testing, a notable im-

provement over previous LSTM-based autoregressive DVAE models like SRNN. This

allows for a more straightforward training procedure. Furthermore, comparing with HiT-

DVAE, the newly proposed LigHT-DVAE model achieves competitive performance with

approximately 20% fewer parameters. Additionally, we have investigated the significance

of the global latent variable w. Experimental results indicate that w can effectively en-

code certain time-independent information across the entire sequence.

We anticipate that HiT/LigHT-DVAE holds significant promise in the realm of unsu-

pervised speech representation learning and dynamical modeling. Such advancements can

potentially benefit various downstream speech processing tasks, including but not limited

to speech enhancement, speech separation, and speech inpainting.

CHAPTER 8

CONCLUSION AND FURTHER

DISCUSSIONS

All that is real is reasonable, and all that is

reasonable is real.

Was vernünftig ist, das ist wirklich; und was

wirklich ist, das ist vernünftig.

— Georg Wilhelm Friedrich Hegel

165

166 Chapter 8: Conclusion and Further Discussions

8.1 CONCLUSION

In this dissertation, we have investigated the applications of DPGMs in diverse audio

and visual tasks within the framework of unsupervised or weakly supervised learning

configurations. More precisely, our focus revolves around a specialized family of DPGMs

tailored for sequential data, specifically the DVAE models. We leverage these models to

address intricate engineering challenges, including multi-source trajectory modeling and

separation, with further applications for MOT and SC-ASS, as well as SE and speech

modeling.

In Chapter 2, we offered a concise overview of contemporary research on DPGMs.

Our focus then shifted to a specific type of generative models – the LVMs. We delved

into the probabilistic modeling structure of various LVMs and discussed the learning and

inference methods of LVMs. Afterwards, we presented diverse deep neural network ar-

chitectures for sequential data modeling, including RNNs, 1D CNNs and Transformers.

At the end of this chapter, we provided a brief introduction to the research backgrounds

of the three primary tasks addressed in this dissertation: MOT, SC-ASS, and SE.

In Chapter 3, we proposed a versatile LVM framework designed to address the com-

plex task of modeling and separating trajectories from multiple sources. Our proposed

solution harnesses the capabilities of a DVAE model for effectively capturing the dy-

namic information of each individual source. Additionally, we incorporate a discrete

latent assignment variable to facilitate the assignment of observations to specific sources,

enabling the formation of coherent trajectories. The DVAE model(s) undergo(es) ini-

tial pre-training on a single-source dataset. Subsequently, the pre-trained DVAE model(s)

is/are seamlessly integrated into the proposed MixDVAE model. The holistic learning and

inference processes of the entire MixDVAE model are executed through the application of

the VI framework, employing a VEM algorithm. This algorithm effectively combines a

structured mean-field approximation with amortized inference techniques. MixDVAE ex-

hibits versatility across various application scenarios. It is adeptly applied to a vision task,

specifically MOT (Chapter 4), as well as an audio task, focusing on SC-ASS (Chapter 5).

The inherent advantage of the MixDVAE model lies in its ability to operate effectively

167

without the need for an extensive amount of annotated data during training. Through pre-

training on either a synthetic or natural single-source dataset, DVAE swiftly adjusts to

the multi-source context within the MixDVAE framework. The implementation of MixD-

VAE in MOT showcases its robustness in scenarios involving frequent object occlusions

and detection gaps. This model serves as a noteworthy complementary solution to the vi-

sion feature-based tracking models within the computer vision community. On the other

hand, while the SC-ASS outcomes achieved by MixDVAE may not currently match the

performance of the state-of-the-art supervised methods [191, 233], its application in this

task demonstrates the versatility of its usage across various scenarios. Furthermore, it

represents a significant stride towards weakly supervised and/or unsupervised SC-ASS.

In Chapter 6, we introduced a novel unsupervised SE framework that utilizes dynam-

ical DPGMs to model both speech and noise signals. This model is developed based on

a previous approach [22], where the initial step involves pre-training a DVAE model on

a clean speech dataset. In [22], the pre-trained DVAE model is subsequently combined

with a NMF noise model, employing the VEM algorithm to estimate clean speech from

the noisy speech signal. In our work, we propose to replace the NMF noise model with

a dynamical DPGM. Our proposed model can be trained in various training/testing con-

figurations (NA, ND and ND + noise adaptation). Specifically, training under the ND

configuration allows the model to circumvent the time-consuming VEM iterations, en-

abling rapid and efficient inference. We have additionally examined the model’s perfor-

mance under unmatched pre-training/testing dataset. The proposed method demonstrates

a relatively robust performance with only a slight decline.

In Chapter 7, we employed a novel DVAE architecture known as HiT/LigHT-DVAE

for modeling speech data. The HiT/LigHT-DVAE models leverage the robust sequential

modeling capabilities of Transformers, seamlessly integrating them into the principled

probabilistic modeling framework of DVAE families. These models encompass two types

of random variables: a global latent variable w designed to capture temporally invariant

information, and a sequence of latent variables z1:T intended to encode dynamical infor-

mation. The special structure of the HiT/LigHT-DVAE models demonstrate robustness

168 Chapter 8: Conclusion and Further Discussions

to mismatches between the teacher-forcing mode used during training and the genera-

tion mode used during testing. Moreover, they achieve superior performance in speech

modeling compared to other DVAE models. In short, HiT/LigHT-DVAE models exhibit

promising potential for downstream applications in speech processing tasks.

8.2 INSIGHTS AND LIMITATIONS

DPGMs indeed constitute a cornerstone of contemporary machine learning research. They

offer a versatile framework for understanding complex data distributions and generating

new data samples. On the one hand, by harnessing the expressive power and scalability

of deep neural networks, various deep generative models, including GANs and recently

developed diffusion models discussed in Section 2.1 demonstrate remarkable proficiency

in generating high-quality data samples.1 On the other hand, DPGMs also provide a

prominent means of discovering unknown underlying factors of data variations. This

aspect enables practical applications such as anomaly detection, data imputation, and fea-

ture disentanglement, fostering deeper insights into the underlying structures of complex

datasets. The discovered data representations learned from large amounts of data can also

benefit plenty of downstream tasks.

In this dissertation, our primary focus has been on employing the capabilities of DPGMs

to address intricate scientific and engineering challenges. It is worth noting that while

supervised learning methods have achieved state-of-the-art performance across various

engineering domains and scientific disciplines, the widespread implementation of artifi-

cial intelligence systems in real-life production settings remains a challenging task with

significant hurdles yet to overcome. Firstly, annotating data in specific domains often re-

quires experts with skilled domain knowledge. For instance, in health care, obtaining the

data labels for predicting organ failure from physiological signals usually necessitates the

involvement of experienced clinicians. Therefore, data annotation is indeed a very expen-

sive endeavor. Secondly, the application of AI systems to real-life scenarios necessitates

1See https://openai.com/dall-e-3 and https://huggingface.co/spaces/facebook/MusicGen
for high quality text-to-image and text-to-music generation demos.

https://openai.com/dall-e-3
https://huggingface.co/spaces/facebook/MusicGen

169

the reliability and interpretability of the system. This entails ensuring that the system’s

decisions can be trusted and understood to some extent, particularly in critical domains

such as healthcare, finance, or education, where transparency and accountability are of

paramount importance. Additionally, interpretability is crucial for gaining insights into a

model’s behavior, correcting model biases and disfunctions, and facilitating collaboration

between AI systems and human experts.

In this PhD work, we investigated a novel framework for unsupervised or weakly-

supervised learning. In general, our approach involves initially pre-training a DPGM us-

ing either natural or synthetic signals to imbue it with prior knowledge about the complex

data distribution. Subsequently, the pre-trained DPGM is integrated into a well-defined

LVM to address practical problems. Notably, our method prioritizes interpretability, as

all factors are defined within a principled probabilistic framework. Additionally, it proves

to be data-frugal, as it does not rely on vast amounts of paired annotated data for train-

ing. Experimental results demonstrate the promising potential of this learning framework.

However, it is important to acknowledge several limitations of this approach, particularly

in its current stage of development. First, complete reliance on unsupervised or weakly-

supervised learning often results in subpar performance compared to fully-supervised

learning setups. Exploring a semi-supervised learning framework, where model param-

eters are learned with a small amount of labeled data, could serve as a potential future

research direction to further enhance model performance. Second, the solutions derived

from this approach using free-form VI and EM-based optimisation methods can be inher-

ently time-consuming. In Chapter 6, we have proposed a method to address this challenge

by replacing the statistical NMF noise model with a DNN-based noise model for speech

enhancement and optimizing the model parameters using the SGD method. While this ap-

proach effectively accelerates inference time while maintaining comparable performance,

the contribution of the DNN to enhancing model performance is not as significant as ex-

pected, despite its increasing expressiveness. We speculate that this may be attributed to

the limitations of unsupervised learning settings in providing effective training signals.

This observation also underscores the necessity for the development of semi-supervised

170 Chapter 8: Conclusion and Further Discussions

training frameworks.

At the end of this section, I would like to discuss some of the observations, reflections

and concerns from my personal perspective as a young researcher in the machine learning

field.

In the first place, concerning the main method that I have explored over the past three

years, I find it to be an elegant and promising approach rooted in the principled Bayesian

philosophy, which, to some extent, guarantees the interpretability and mathematical rig-

orous. However, when we are trying to integrate DNNs into the elegant PGM framework,

I always sense that the theories of PGMs and VI presented in Chapter 2, Section 2.1, Sec-

tion 2.2, and Section 2.3 are not sufficient. Two observations are given as follows. The

first one is that, although this two stage un-/weakly supervised learning paradigm achieves

satisfying empirical results, the underlying reasons for its success remains unclear. This

necessitates further and more rigorous investigations. Actually, the robustness and gener-

alization ability of the pre-trained DPGM significantly influence the performance of this

method. During the second integration/fine-tuning stage, we would like the pre-trained

model to retain the learned patterns of the single source in the case of source separa-

tion (of the clean speech in the case of SE), while remaining robust to the noisy input.

Nevertheless, it seems that we do not have a mathematical tool to explain and measure

this property. Moreover, I think this learning paradigm is closely related to current trend

of employing foundation models, which involves first pre-training a model over a large

dataset and then adapting it for specific tasks. In my personal opinion, it is imperative

to establish a rigorous and more profound theory to aid in our understanding of the em-

pirical phenomena. Another observation comes from the fact that, despite the significant

success of deep LVMs such as VAEs and DVAEs across various application scenarios,

our understanding of the latent space of these models remains limited. An important re-

search direction in the field of machine learning, known as representation learning [15],

is dedicated to addressing this question. Nonetheless, similarly, no principled and unified

theories have been established yet.

Another aspect that I would like to highlight and discuss originates from a more general

171

and high-level point of view. Throughout my PhD studies, the ongoing discussions and

debates between theory versus practice and academia versus industry have never ceased.

And these questions have continuously weighted on my mind from the beginning to the

end. After completing the draft of most parts of this PhD thesis, I started to think about the

“true problems” within the machine learning and artificial intelligence field. As Vladimir

N. Vapnik mentioned in the preface of his book The Nature of Statistical Learning Theory

[206]:

Understanding the nature of the problem is extremely important because it

leads to searching in the right direction for results and prevents searching in

wrong directions.

To understand the nature of the problem, the first questions that I start to ask are: What are

the definitions of machine learning and artificial intelligence? And what precisely con-

stitutes the research object in this field? An inspiring opinion shared by Josh Tenenbaum

at NeurIPS 2021, and quoted by Kevin P. Murphy in the Introduction chapter of his book

Probabilistic Machine Learning: Advanced Topics [141] is that:

Intelligence is not just about pattern recognition and function approximation.

It’s about modeling the world.

If we interpret the progression of natural sciences, such as physics, chemistry, biology,

etc., as humanity’s effort to model the world through quantitative analysis and mathemat-

ical tools, machine learning and artificial intelligence can be understood as endeavors to

model and quantify the human intelligence and learning process, and subsequently trans-

late these models into mathematical formulations and computer algorithms. We should

note that this is only one perspective to interpret machine learning and artificial intelli-

gence. And this perspective is closer to the computational cognitive science. Another

perspective, from a more practical standpoint, is that we endeavor to model the world,

uncover patterns and dependencies, and/or achieve specific application goals, by harness-

ing the formidable computational capability of computers and access to (large) datasets.

The research field of machine learning and artificial intelligence is so vast that it is not

172 Chapter 8: Conclusion and Further Discussions

only concerned with well-designed models, architectures and algorithms that achieve su-

perior performance on specific tasks, but also concerned with fundamental theories and

principles. However, it seems that the recent explosive growth of deep learning methods

in several application fields such as computer vision, natural language processing and au-

dio processing, alongside the discovery of scaling laws for neural language models [102]

and development of foundation models [28], has raised challenges about traditional sta-

tistical learning theories. And our theoretical understanding seems to lag far behind the

advancements seen in practical applications.

8.3 TOWARDS A BROADER DISCUSSION

Reflecting on history, from Alain Turing’s initial conception of “learning machines” to the

introduction of the term “artificial intelligence” at the Dartmouth Conference in 1956, the

field of AI has witnessed an extraordinary evolution over the past seven decades. Genera-

tions after generations of brilliant researchers have dedicated their intelligence, diligence,

and passion to propel this research trajectory forward. Humanity’s power to achieve such

remarkable strides within such a relatively brief period never ceases to astonish me. Un-

doubtedly, the rise of deep learning, characterized by the utilization of deep neural net-

works with multiple non-linear layers, has sparked a revolution across various domains of

AI research, including computer vision, natural language processing, and speech recog-

nition. Moreover, the advent of large-scale pre-trained models such as BERT [45] and

GPT [146], which are also recognized as foundation models [28], has brought us into an

entirely new realm of advancement. The launch of the ChatGPT product alongside the

GPT-4 model [146] instilled a growing belief that the foundation models truly possess a

remarkable semblance of human intelligence. Nevertheless, it is important to acknowl-

edge that our comprehension and mastery of these models still significantly trail the pace

of their development.

In crafting this dissertation, one critical question has persistently engaged my thoughts:

What is the ultimate aim behind the development of AI? Through numerous conversa-

tions with colleagues and friends, and after thoughtful reflection, I have arrived at an

173

insight grounded in my present understanding. If AI is fated to revolutionize societal

norms, refine how we think, and transform our cultural landscapes, my aspiration is that it

promotes deeper empathy and understanding among individuals while mitigating tenden-

cies towards arrogance, prejudice, and exploitation. This would enable people to forge

stronger and more meaningful connections with one another. Moreover, I envision AI

liberating individuals from tedious work, thereby affording them greater opportunities to

explore their creative potentials with newfound time and energy. Nonetheless, achieving

this ultimate objective entails a significant journey ahead. It necessitates that each individ-

ual fully leverage their wisdom, creativity, and rational thinking to sculpt the forthcoming

future landscape. The required efforts are twofold. On one side, this asks the researchers

and developers of AI systems to incorporate ethical considerations and societal impacts at

the heart of the AI’s development, governance, and deployment. On the other side, it calls

upon every individual, as end-users of AI technologies, to cultivate our critical thinking

abilities and figure out the most effective ways to deploy AI, thereby ensuring we master

these tools rather than become their slaves. Interestingly, I have also discussed this ques-

tion with ChatGPT. Its answers are reported in Figure 8.1, 8.2 and 8.3. I have also asked

ChatGPT to generate a picture of how people will live with AI in the future. The gener-

ated picture is shown in Figure 8.4. In this picture, one human-like robot pushes a stroller

while another human-like robot carries a basket of vegetables. A couple with a child walk

casually alongside them. It is a very beautiful picture, and just as ChatGPT describes it,

“it showcases a harmonious coexistence between humans and robots in a technologically

advanced, sustainable urban environment.” This picture makes me believe that AI can

indeed make great contributions to gender equality by reducing housework burdens and

redistributing roles and tasks traditionally influenced by gender norms.

In conclusion, I deeply believe that humanity will eventually master the art of leverag-

ing AI, just as we have learned to harness the power of machines. As ChatGPT suggests,

the ideal path forward lies in fostering a collaborative relationship between humans and

AI, rather than a competitive one. This partnership holds the promise of unlocking un-

precedented potential and advancing our collective capabilities.

174 Chapter 8: Conclusion and Further Discussions

Figure 8.1: Conversation with ChatGPT about the ultimate aim behind the development
of AI. This conversation is generated by GPT-3.5.

175

Figure 8.2: Conversation with ChatGPT about the relationship between humans and AI.
This conversation is generated by GPT-3.5.

176 Chapter 8: Conclusion and Further Discussions

Figure 8.3: Conversation with ChatGPT about what is a good way to deploy AI. This
conversation is generated by GPT-3.5.

177

Figure 8.4: A picture of how people will live with AI in the future generated by DALL·E.
The prompt used to generate this picture is “Please draw me a picture of how people will
live with AI in the future.”

178 Chapter 8: Conclusion and Further Discussions

CHAPTER A

APPENDIX

A.1 MIXTURE OF DVAES FOR MULTI-SOURCE TRAJECTORY MOD-

ELING AND SEPARATION

A.1.1 MIXDVAE ALGORITHM CALCULATION DETAILS

E-S Step

Here we detail the calculation of the posterior distribution qϕs(s|o). Using Equa-

tion 3.2, the first expectation term in Equation 3.14 can be developed as:

Eqϕw (w|o)
[
log pθo(o|w, s)

]
= Eqϕw (w|o)

[T∑
t=1

Kt∑
k=1

log pθo(otk|wtk, st,1:N)

]

=
T∑
t=1

Kt∑
k=1

Eqϕw (wtk|otk)

[
log pθo(otk|wtk, st,1:N)

]
. (A.1)

Since for any pair (t, k), the assignment variable wtk follows a discrete posterior distribu-

tion, we can denote its values by

qϕw(wtk = n|otk) = ηtkn, (A.2)

179

180 Chapter A: Appendix

which will be calculated later in the E-W Step. With this notation, we have:

Eqϕw (w|o)
[
log pθo(o|w, s)

]
=

T∑
t=1

Kt∑
k=1

N∑
n=1

ηtkn log pθo(otk|wtk = n, stn). (A.3)

The second expectation in Equation 3.14 cannot be computed analytically as a distribution

on s because of the non-linearity in the decoder and in the encoder. In order to avoid a

tedious sampling procedure and obtain a computationally efficient solution, we further

approximate this term by assuming qϕz(z|s) ≈ qϕz(z|s = m(i−1)), where m(i−1) is the

mean value of the posterior distribution of s estimated at the previous iteration. By using

this approximation, the term Eqϕz (z|s)
[
log qϕz(z|s)

]
is now considered as a constant.

In addition, we observe that the second term of Equation 3.14 can be rewritten as:

Eqϕz (z|s)
[
log pθsz(s, z)

]
=

N∑
n=1

E
qϕz (z:,n|m

(i−1)
:,n)

[
log pθsz(s:,n, z:,n)

]
, (A.4)

since both the DVAE joint distribution and posterior distribution factorise over the sources,

as formalized in Equation 3.6 and Equation 3.8. As a consequence, the posterior distribu-

tion of s factorises over the sources too:

qϕs(s|o) =
N∏

n=1

qϕs(s:,n|o), (A.5)

and therefore:

qϕs(s:,n|o) ∝ exp
(

E
qϕz (z:,n|m

(i−1)
:,n)

[
log pθsz(s:,n, z:,n)

])
T∏
t=1

Kt∏
k=1

exp
(
ηtkn log pθo(otk|wtk = n, stn)

)
. (A.6)

In the above equation, the expectation term cannot be calculated in closed form. As

usually done in the DVAE methodology, it is thus replaced by a Monte Carlo estimate

using sampled sequences drawn from the DVAE inference model. Let us denote by

z
(i)
:,n ∼ qϕz(z:,n|m

(i−1)
:,n) such a sampled sequence. In the present work, we use single

181

point estimate, thus obtaining:

qϕs(s:,n|o) ∝ pθsz(s:,n, z
(i)
:,n)

T∏
t=1

Kt∏
k=1

exp
(
ηtkn log pθo(otk|wtk = n, stn)

)
∝

T∏
t=1

(
pθs(stn|s1:t−1,n, z

(i)
1:t,n)pθz(z

(i)
tn |s1:t−1,n, z

(i)
1:t−1,n)

Kt∏
k=1

exp
(
ηtkn log pθo(otk|wtk = n, stn)

))
. (A.7)

We observe that the t-th element of the previous factorisation is a distribution over stn

conditioned by s1:t−1,n. As for qϕz(z:,n|s:,n), the dependency with s1:t−1,n is non-linear

and therefore would impede to obtain a computationally efficient closed-form solution.

In the same attempt of avoiding costly sampling strategies, we approximate the previous

expression replacing s1:t−1,n with s
(i)
1:t−1,n, obtaining:

qϕs(s:,n|o) ≈
T∏
t=1

qϕs(stn|s
(i)
1:t−1,n,o), (A.8)

with

qϕs(stn|s
(i)
1:t−1,n,o) ∝ pθs(stn|s

(i)
1:t−1,n, z

(i)
1:t,n)

Kt∏
k=1

exp
(
ηtkn log pθo(otk|wtk = n, stn)

)
,

(A.9)

since the term pθz(z
(i)
tn |s

(i)
1:t−1,n, z

(i)
1:t−1,n) becomes a constant.

Another interesting consequence of sampling s1:t−1,n is that the dependency with the

future observations of qϕs(stn|s
(i)
1:t−1,n,o) disappears. Indeed, since we are sampling at

every time step, the future posterior distributions qϕs(st+k,n|s(i)1:t+k−1,n,o) do not depend

on stn, and therefore the posterior distribution of stn will not depend on the future obser-

vations.

The two distributions in the above equation are Gaussian distributions defined in (2.35),

and (3.3). Therefore, it can be shown that the variational posterior distribution of stn is

a Gaussian distribution: qϕs(stn|s
(i)
1:t−1,n,o) = N (stn;mtn,Vtn) with covariance matrix

182 Chapter A: Appendix

and mean vector provided in (3.18) and (3.19) respectively, and recalled here for com-

pleteness:

Vtn =
(Kt∑

k=1

ηtknΦ
−1
tk + diag(v(i)

θs,tn
)−1

)−1

, (A.10)

mtn = Vtn

(Kt∑
k=1

ηtknΦ
−1
tk otk + diag(v(i)

θs,tn
)−1µ

(i)
θs,tn

)
, (A.11)

where v(i)
θs,tn

and µ
(i)
θs,tn

are simplified notations for vθs(s
(i)
1:t−1,n, z

(i)
1:t,n) and µθs(s

(i)
1:t−1,n, z

(i)
1:t,n)

respectively, denoting the variance and mean vector estimated by the DVAE for source n

at time frame t.

E-Z Step

Here we detail the calculation of the ELBO term Equation 3.20.

L(θs, θz, ϕz;o) = Eqϕs (s|o)

[
Eqϕz (z|s)

[
log pθsz(s, z)− log qϕz(z|s)

]]
= E N∏

n=1
qϕs (s:,n|o)

[
E N∏

n=1
qϕz (z:,n|s:,n)

[N∑
n=1

log pθsz(s:,n, z:,n)
]

− E N∏
n=1

qϕz (z:,n|s:,n)

[N∑
n=1

log qϕz(z:,n|s:,n)
]]

=
N∑

n=1

Eqϕs (s:,n|o)

[
Eqϕz (z:,n|s:,n)

[
log pθsz(s:,n, z:,n)

]
− Eqϕz (z:,n|s:,n)

[
log qϕz(z:,n|s:,n)

]]
=

N∑
n=1

Ln(θs, θz, ϕz;o), (A.12)

with

Ln(θs, θz, ϕz;o) = Eqϕs (s:,n|o)

[
Eqϕz (z:,n|s:,n)

[
log pθsz(s:,n, z:,n)

]
− Eqϕz (z:,n|s:,n)

[
log qϕz(z:,n|s:,n)

]]
.

(A.13)

E-W Step

Here we detail the calculation of the posterior distribution qϕw(w|o). Applying the

optimal update equation Equation 2.53 to w, we have:

qϕw(w|o) ∝ exp
(

Eqϕs (s|o)qϕz (z|s)
[
log pθ(o,w, s, z)

])
. (A.14)

183

Using Equation 3.1, we derive:

qϕw(w|o) ∝ pθw(w) exp
(

Eqϕs (s|o)
[
log pθo(o|w, s)

])
. (A.15)

Using Equation 3.2, the expectation term can be developed as:1

Eqϕs (s|o)
[
log pθo(o|w, s)

]
= Eqϕs (s|o)

[T∑
t=1

Kt∑
k=1

log pθo(otk|wtk, st,:)
]

=
T∑
t=1

Kt∑
k=1

Eqϕs (st,:|o)
[
log pθo(otk|wtk, st,:)

]
. (A.16)

Combining Equation 3.4 and the previous result, we have:

qϕw(w|o) ∝
T∏
t=1

Kt∏
k=1

pθw(wtk) exp
(

Eqϕs (st,:|o)
[
log pθo(otk|wtk, st,:)

])
, (A.17)

which we can rewrite

qϕw(w|o) ∝
T∏
t=1

Kt∏
k=1

qϕw(wtk|o), (A.18)

with

qϕw(wtk|o) = pθw(wtk) exp
(

Eqϕs (st,:|o)
[
log pθo(otk|wtk, st,:)

])
. (A.19)

The assignment variable wtk follows a discrete distribution and we denote:

ηtkn = qϕw(wtk = n|o) ∝ pϕw(wtk = n) exp
(

Eqϕs (stn|o)
[
log pθo(otk|wtk = n, stn)

])
.

(A.20)

Using the fact that both pθo(otk|wtk = n, stn) and qϕs(stn|o) are multivariate Gaussian

distributions (defined in Equation 3.3 and Equation 3.17–Equation 3.19, respectively),

1In fact, the posterior distribution qϕs(st,:|o) is also conditioned on s1:t−1,: and z1:t,:.
We use this abuse of notation for concision.

184 Chapter A: Appendix

the previous expectation can be calculated in closed form:

Eqϕs (stn|o)
[
log pθo(otk|wtk = n, stn)

]
=

∫
stn

N (stn;mtn,Vtn) logN (otk; stn,Φtk)dstn

= −1

2

[
log |Φtk|+ (otk −mtn)

TΦ−1
tk (otk −mtn)

+ Tr
(
Φ−1

tk Vtn

)]
. (A.21)

By using Equation 3.5, the previous result, and normalizing to 1, we finally get:

ηtkn =
βtkn∑N
i=1 βtki

, (A.22)

where

βtkn = N (otk;mtn,Φtk) exp
(
− 1

2
Tr
(
Φ−1

tk Vtn

))
. (A.23)

M Step

Here we detail the calculation of Φtk. In the ELBO expression Equation 3.10, only the

first term depends on θo:

L(θo;o) = Eqϕw (w|o)qϕs (s|o)
[
log pθo(o|w, s)

]
=

N∑
n=1

T∑
t=1

Kt∑
k=1

ηtkn

∫
stn

N (stn;mtn,Vtn) logN (otk; stn,Φtk)dstn

= −1

2

N∑
n=1

T∑
t=1

Kt∑
k=1

ηtkn

[
log |Φtk|+ (otk −mtn)

TΦ−1
tk (otk −mtn) + Tr(Φ−1

tk Vtn)
]
.

(A.24)

By computing the derivative of L(θo;o) with respect to Φtk and setting it to 0, we find

the optimal value of Φtk that maximizes the ELBO:

Φtk =
N∑

n=1

ηtkn

(
(otk −mtn)(otk −mtn)

T +Vtn

)
. (A.25)

185

A.1.2 SRNN IMPLEMENTATION DETAILS

The SRNN generative model is implemented with a forward LSTM network, which em-

beds all the past information of the sequence s. Then, a dense layer with the tanh activa-

tion function plus a linear layer provide the parameters µθs ,vθs . Similarly, the parameters

µθz ,vθz are computed with two dense layers with tanh activation function plus a linear

layer appended to the LSTM as well. The inference model shares the hidden variables of

the forward LSTM network of the generative model and uses two dense layers with the

tanh activation function plus a linear layer to compute the parameters µϕz ,vϕz .

In the MOT set-up, both st and zt are of dimension 4. While in the SC-ASS set-up, st

is of dimension 513 and zt is of dimension 16. The SRNN generative distributions in the

right-hand side of Equation 3.28 are implemented as:

ht = dh(st−1,ht−1), (A.26)

[
µθz ,vθz

]
= dz(ht, zt−1), (A.27)

pθz(zt|s1:t−1, zt−1) = N
(
zt;µθz , diag(vθz)

)
, (A.28)[

µθs ,vθs

]
= ds(ht, zt), (A.29)

pθs(st|s1:t−1, zt) = N
(
st;µθs , diag(vθs)

)
, (A.30)

where the function dh in Equation A.26 is implemented by a forward RNN and ht denotes

the RNN hidden state vector, the dimension of which is set to 8 for MOT and 128 for

SC-ASS. In practice, LSTM networks are used. The function ds in Equation A.29 is

implemented by a dense layer of dimension 16 for MOT and of dimension 256 for SC-

ASS, with the tanh activation function, followed by a linear layer, which outputs are the

parameters µθs ,vθs . The function dz in Equation A.27 is implemented by two dense

layers of dimension 8, 8 respectively for MOT and of dimension 64, 32 respectively for

SC-ASS, with the tanh activation function, followed by a linear layer, which outputs are

the parameters µθz ,vθz .

186 Chapter A: Appendix

Figure A.1: Schema of the SRNN model architecture. The “plus” symbol represents the
concatenation of the input vectors.

The SRNN inference model in the right-hand side of Equation 3.29 is implemented as:

[
µϕz ,vϕz

]
= ez(ht, st, zt−1), (A.31)

qϕz(zt|zt−1, s1:t) = N
(
zt;µϕz , diag(vϕz)

)
, (A.32)

where the function ez in Equation A.31 is implemented by two dense layers of dimension

16 and 8 respectively for MOT and of dimension 64 and 32 respectively for SC-ASS, with

the tanh activation function, followed by a linear layer, which outputs are the parameters

µϕz ,vϕz .

The SRNN architecture is schematized in Figure A.1. It can be noted that the RNN

internal state ht cumulating the information on s1:t−1 is shared by the encoder and the

decoder, see [71, Chapter 4] for a discussion on this issue.

A.2 APPLICATION OF MIXDVAE ON MOT

A.2.1 CASCADE INITIALIZATION IN MOT

For the initialization of the source (position) vector, we first split the long sequence in-

dexed by t ∈ {1, 2, ..., T} into J smaller sub-sequences indexed by {{1, ..., t1}, {t1 +

1, ..., t2}, ..., {tJ−1 + 1, ..., T}}. For the first sub-sequence, the mean vector sequence

187

Algorithm 2 Cascade initialization of the position vector sequence

Input:
Detected bounding boxes at the first frame o1,1:K1;
Pre-trained DVAE parameters {θs, θz, ϕz};
Initialized observation model covariance matrices {Φ(0)

tk }
T,Kt

t,k=1;
Initialized covariance matrices {V(0)

tn }
T,N
t,n=1;

Output:
Initialized mean position vector sequence {m(0)

tn }
T,N
t,n=1;

Initialized sampled position vector sequence {s(0)tn }
T,N
t,n=1;

1: Split the whole observation sequence o into J sub-sequences indexed by {t0 =
1, ..., t1}, {t1 + 1, ..., t2}, ..., {tJ−1 + 1, ..., tJ = T};

2: for j == 1 do
3: for k ← 1 to K1 do
4: n← k;
5: for t← 1 to t1 do
6: m

(0)
tn , s

(0)
tn = o1k;

7: end for
8: end for
9: end for

10: for j ← 2 to J do
11: for n← 1 to N do
12: for t← tj−1 + 1 to tj do
13: m

(0)
tn , s

(0)
tn = m

(I0)
tj−1n;

14: end for
15: {m(I0)

tn }
tj
t=tj−1+1 = MixDVAE(I0, {{θs, θz, ϕz},

16: {Φ(0)
tk ,m

(0)
tn ,V

(0)
tn , s

(0)
tn }

tj ,Kt,N
t=tj−1+1,k=1,n=1});

17: end for
18: end for
19: m

(0)
1:T,1:N =

[
m

(0)
1:t1,1:N

, ...,m
(0)
tJ−1+1:T,1:N

]
;

20: s
(0)
1:T,1:N =

[
s
(0)
1:t1,1:N

, ..., s
(0)
tJ−1+1:T,1:N

]
;

m1:t1,n is initialized as the detected vector at the first frame o1k repeated for t1 times with

a arbitrary order of assignment. Thus, there are as many tracked sources as initial detec-

tions, i.e., this implicitly sets N = K1. The subsequence of source position vectors s1:t1,n

is initialized with the same values as for the mean vector. Then, we run the MixDVAE

algorithm on the first subsequence for I0 iterations. Next, we initialize the mean vector

sequence mt1+1:t2,n of the second subsequence with mt1n repeated for t2 − t1 times (and

the same for st1+1:t2,n). And so on for the following subsequences. Finally, the initial-

188 Chapter A: Appendix

Algorithm 3 Synthetic trajectories generation

Input:
Total sequence length T ;
Maximum sub-sequence number smax;
Distribution parameters µb0 , σb0 , µr, σr, µa1 , σa1 , µa2 , σa2 , µω, σω, µϕ0 , σϕ0;
Discrete probability distribution of different elementary trajectory function types p =
[p1, p2, p3, p4];

Output:
Synthetic bounding box position sequence gen seq = {(xL

t , x
T
t , x

R
t , x

B
t)}Tt=1;

1: function GENSEQ(x0, s, tsplit, params prob, p)
2: start = x0;
3: for i← 0 to s do
4: Sample function type using p;
5: Sample trajectory function parameters params list using params prob;
6: ti = tsplit[i];
7: x subi = GenTraj(start, func type,
8: params list);
9: start = x subi[ti];

10: end for
11: x = [x sub0, ..., x subs−1];
12: return x;
13: end function
14: Sample x0, y0 from U(0, 1);
15: Sample b0 from logN (µb0 , σb0);
16: Sample rab from N (µr, σr);
17: Randomly sample s in {0, ..., smax};
18: Randomly sample tsplit = {t0, ..., ts−1} in {1, ..., T};
19: x = GenSeq(x0, s, tsplit, params prob, p);
20: y = GenSeq(y0, s, tsplit, params prob, p);
21: b = GenSeq(w0, s, tsplit, params prob, p);
22: a = b ∗ rab;
23: gen seq = [x, y, x+ b, y − a];

ized subsequences are concatenated together to form the initialized whole sequence. The

pseudo-code of the cascade initialization can be found in Algorithm 2.

A.2.2 MOT DATASET PROCESSING

Synthetic trajectory dataset generation

To generate bounding boxes with reasonable size, we generate the coordinates of the

top-left point (noted as xL
t and xT

t) plus the height (noted as at) and width (noted as

189

bt) of the bounding boxes and deduce the coordinates of the bottom-right point. The

width-height ratio is sampled randomly, and kept constant during the trajectory. While

the trajectory of one coordinate is generated using piece-wise combinations of elemen-

tary functions, which are: static a(t) = a0, constant velocity a(t) = a1t + a0, constant

acceleration a(t) = a2t
2 + a1t + a0, and sinusoidal (allowing for circular trajectories)

a(t) = a sin(ωt + ϕ0). That is to say, we split the whole sequence into several seg-

ments, and each segment is dominated by a certain elementary function. An example of a

3-segment combination could be:

a(t) =

a0 1 ≤ t < t1,

a2t
2 + a1t+ a′0 t1 ≤ t < t2,

a3 sin(ωt+ ϕ0) t1 ≤ t ≤ T,

(A.33)

where the segments length is sampled from some pre-defined distributions to generate

reasonable and continuous trajectories. The number of segments s is first uniformly

sampled in the set {1, . . . , smax}. We then sample s segment lengths that sum up to T .

This defines the segment boundaries t1, . . . , ts−1. For each segment, one of the four ele-

mentary functions is randomly selected. The function parameters are sampled as follow:

a1 ∼ N (µa1 , σ
2
a1
), a2 ∼ N (µa2 , σ

2
a2
), ω ∼ N (µω, σ

2
ω) and ϕ0 ∼ N (µϕ0 , σ

2
ϕ0
). The two

remaining parameters, a0 and a, are set to the values needed to ensure continuous trajec-

tories, thus initialising the trajectories at every segment, except for the first one. The very

initial trajectory point is sampled randomly from U(0, 1). And the initial width is sampled

from a log-normal distribution b0 ∼ logN (µb0 , σ
2
b0
). Finally, the ratio between the height

and width is supposed to be constant with respect to time. It is sampled from a log-normal

distribution rab =
a
b
∼ logN (µr, σ

2
r) and the height is obtained by multiplying the width

and the ratio. More implementation details can be found in Algorithm 3.

In our experiments, the total sequence length of the generated trajectories for DVAE

pre-training equals to T = 60 frames. And the maximum number of segments is set to

smax = 3. The parameters of the a1, a2, ω, ϕ0, w0, and rhw distributions are determined

by estimating the statistical characteristics of publicly published detections of the MOT17

190 Chapter A: Appendix

training dataset. More precisely, we estimated the empirical mean and standard deviation

of the speed and acceleration for all matched detection sequences (i.e., the first and second

order differentiation of the position sequences).

MOT17-3T dataset construction

To construct the MOT17-3T dataset, first, we matched the detected bounding boxes

to the ground-truth bounding boxes using the Hungarian algorithm [110] and retained

only the matched detected bounding boxes (i.e., the detected bounding boxes that were

not matched to any ground-truth bounding boxes were discarded). The cost matrix were

computed according to the the Intersection-over-Union (IoU) distance between bounding

boxes. We split each complete video sequence into subsequences of length T (three differ-

ent values of T are tested in our experiments, as detailed below) and only kept the tracks

with a length no shorter than T . For each subsequence, we randomly chose three tracks

that appeared in this subsequence from the beginning to the end. The detected bounding

boxes of these three tracks form one test data sample. We have tested three values for the

sequence length T to evaluate its influence on the tracking performance of our algorithm:

60, 120, and 300 frames (respectively corresponding to 2, 4, and 10 seconds at 30 fps).

Among the three public detection results provided with the MOT17 dataset, SDP has the

best detection performance. So, we used the detection results of SDP to create our dataset.

A.2.3 MOT BASELINES IMPLEMENTATION DETAILS

ArTIST [179] is a probabilistic auto-regressive model which consists of two main blocks:

MA-Net and the ArTIST model. MA-Net is a recurrent autoencoder that is trained to learn

a representation of the dynamical interaction between all agents in the scene. ArTIST is

an RNN that takes as input a 4D velocity vector of the current frame for one object as well

as the corresponding 256-dimensional interaction representation learned by MA-Net, and

outputs a probability distribution for each dimension of the motion velocity for the next

frame. As indicated in [179], the models are trained on the MOT17 training set and the

PathTrack [135] dataset. We have reused the trained models as well as the tracklet scoring

and inpainting code provided by the authors and reimplemented the object tracking part

191

according to the paper, as this part was not provided. The tracklets are initialized with the

bounding boxes detected in the first frame. For any time frame t, the score of assigning

a detection otk to a tracklet n is obtained by evaluating the likelihood of this detection

under the distribution estimated by the ArTIST model. The final assignment is computed

using the Hungarian algorithm. For any tentatively alive tracklet whose last assignment

is prior to t − 1 with a non-zero gap (implying that there exists a detection absence),

the algorithm first performs tracklet inpainting to fill the gap up to t − 1, then computes

the assignment score with the inpainted tracklet. As described in [179], the inpainting

is done with multinominal sampling, and a tracklet rejection scheme (TRS) is applied to

select the best inpainted trajectory. In order to eliminate possible inpainting ambiguities,

the Hungarian algorithm is run twice, once only for the full sequences without gaps and

the second time for the inpainted sequences. The number of candidates for multinominal

sampling is set to 50. For the TRS, the IoU threshold used in [179] is 0.5. In our test

scenario, there are less tracklets and the risk of false negative is much greater than that of

false positive. So, we decreased the threshold to 0.1, which provided better results than

the original value.

A.2.4 MORE MOT TRACKING EXAMPLES

The first example plotted in Fig. A.2 illustrates the case where two persons cross each

other. This is one of the most complicated situations that may cause an identity switch

and even lead to tracking loss. Considering the limited space for the figure, we display the

bounding boxes every ten frames to view the whole process of crossing. For t = 60, when

the ground-truth bounding boxes of Sources 2 and 3 (s2 and s3 in the figure) strongly

overlap, Detection o2 disappears. Again, ArTIST exhibits frequent identity switches.

Besides, at t = 20, the estimated bounding box m1 is totally overlapped with that of

m3. And at t = 90, the estimated bounding boxes for all of the three sources are getting

very close to each other. This indicates that the identity switches can cause unreasonable

trajectories estimation. For VKF, the observations for both Sources 2 and 3 are assigned

to the same target s3 all along the sequence, due to s2 and s3 being close to each other,

192 Chapter A: Appendix

Example 1: Crossing sources.
t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 t = 70 t = 80 t = 90

Ground
Truth

Detection

ArTIST

VKF

m 2
m 1

m 3 m 2
m 1

m 3 m 2
m 1

m 3 m 2

m 1

m 3 m 2

m 1

m 3 m 2

m 1

m 3
m 2

m 1

m 3 m 2

m 1

m 3
m 2

m 1

m 2

m 1 Deep AR

MixDVAE

Example 2: Crossing sources with frequent detection absence.
t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 t = 70 t = 80 t = 90

Ground
Truth

Detection

ArTIST

VKF

m 2
m 1

m 3 m 2
m 1

m 3 m 2
m 1

m 3 m 2

m 1

m 3 m 2

m 1

m 3 m 2

m 1

m 3
m 2

m 1

m 3 m 2

m 1

m 3
m 2

m 1

m 2

m 1 Deep AR

MixDVAE

Figure A.2: Examples of tracking result obtained with the proposed MixDVAE algorithm
and the two baselines. For clarity of presentation, the simplified notations s1, o1, and
m1 denote the ground-truth source position, the observation, and the estimated position,
respectively (for Source 1, and the same for the two other sources). Best seen in color.

so that the estimated bounding boxes m2 and m3 overlap completely. For the Deep AR,

the estimation of m3 becomes inaccurate from t = 70 and it disappears at t = 80 and

t = 90 (the estimation is out of the frame). In contrast, MixDVAE displays a consistent

tracking of the three sources. For t = 50, 60, and 70, the estimated bounding boxes m2

193

and m3 overlap due to the ground-truth bounding boxes s2 and s3 strongly overlap each

other. However, the tracking is correctly resumed at t = 80, with no identity switch (i.e.,

the crossing of Sources 2 and 3 is correctly captured by the model).

The second example displayed in Fig. A.2 is another more complicated situation with

two sources very close to each other and frequent detection absence. At t = 20 when ob-

servation o3 disappears, both ArTIST and VKF lose one of the tracks, whereas MixDVAE

keeps a reasonable tracking of the three tracks. From t = 60 to 80, both o2 and o3 are

absent. The tracks inpainted by ArTIST are not consistent anymore and VKF still misses

one track. The estimations of Deep AR are inaccurate when the detections are absent.

However, even in this difficult scenario, MixDVAE keeps on providing three reasonable

trajectories.

A.3 APPLICATION OF MIXDVAE ON SC-ASS

A.3.1 FORMULAS FOR SC-ASS

With the adaptations in the model mentioned at the beginning of Chapter 5 for the SC-

ASS task, the solution formulas are as following. In the E-S Step, Equation 3.18 and

Equation 3.19 become:

Vtn =
(Kt∑

k=1

ηtknP
T
kΦ

−1
tk + diag(v(i)

θs,tn
)−1

)−1

, (A.34)

mtn = Vtn

(Kt∑
k=1

ηtknP
T
kΦ

−1
tk otk

)
. (A.35)

The E-Z Step is not changed. In the E-W Step, Equation 3.25 become:

βtkn = Nc(otk;Pkmtn,Φtk) exp
(
− 1

2
Tr
(
PT

kΦ
−1
tk PkVtn

))
. (A.36)

Finally, in the M Step, Equation 3.26 become:

Φtk =
N∑

n=1

ηtkn

(
(otk −Pkmtn)(otk −Pkmtn)

T +PkVtnP
T
k

)
. (A.37)

194 Chapter A: Appendix

A.3.2 MORE SC-ASS EXAMPLES

In Fig.A.3 we plot two other SC-ASS examples.

A.4 UNSUPERVISED SPEECH ENHANCEMENT WITH DEEP DYNAMI-

CAL PROBABILISTIC GENERATIVE MODELS

A.4.1 POSTERIOR DISTRIBUTIONS DERIVATION

Applying the D-Separation [24] method, the posterior distribution corresponding to the

generative model Equation 6.9 can be decomposed as follows:

pϕ(s1:T , z1:T |x1:T) =
T∏
t=1

pϕs(st|z1:t,xt,pt)pϕz(zt|z1:t−1,x1:T). (A.38)

For each time frame t, by applying the Bayesian formula, the terms related to st can

be developed as:

pϕs(st|z1:t,xt,pt) =
pθn(xt|st,pt)pθs(st|z1:t)p(z1:t,x1:t−1)

p(z1:t,x1:t)
,

∝ pθn(xt|st,pt)pθs(st|z1:t),

= Nc(xt; st, diag(vθn,t(pt)))Nc(st;0, diag(vθs,t)). (A.39)

Therefore, p(st|z1:t,x1:t) is a complex Gaussian distribution p(st|z1:t,x1:t) = Nc(µϕs,t,vϕs,t),

with

µϕs,t =
vθs,t(z1:t)

vθs,t(z1:t) + vθn,t(x1:t−1)
xt, (A.40)

vϕs,t =
vθs,t(z1:t)vθn,t(x1:t−1)

vθs,t(z1:t) + vθn,t(x1:t−1)
. (A.41)

While the distribution pϕz(zt|z1:t−1,x1:T) is computationally intractable, we approximate

it with the RVAE inference model:

pϕz(zt|z1:t−1,x1:T) ≈ qϕz(zt|z1:t−1,xt:T), (A.42)

195

with

qϕz(zt|z1:t−1, st:T) = N (zt;µϕz,t, diag(vϕz,t)). (A.43)

The parameters to be optimized in the inference model are: ϕ = {ϕz}.

196 Chapter A: Appendix

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

(a) Mixture
Sp

ee
ch

(b) Ground Truth

Fl
ut

e

(c) VKF-Oracle
40

30

20

10

0

10

20

30

40

Sp
ee

ch

(d) DVAE-init

Fl
ut

e

(e) VKF-DVAE-init (f) MixDVAE
40

30

20

10

0

10

20

30

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

(a) Mixture

Sp
ee

ch

(b) Ground Truth

Fl
ut

e

(c) VKF-Oracle
40

30

20

10

0

10

20

30

40

Sp
ee

ch

(d) DVAE-init

Fl
ut

e

(e) VKF-DVAE-init (f) MixDVAE
40

30

20

10

0

10

20

30

40

Figure A.3: Examples of audio source separation results obtained with the proposed
MixDVAE algorithm and the baselines. Best seen in color.

ACRONYMS

AR autoregressive. 149, 150, 158, 160, 163

ASS Audio source separation. 66–69

BBVI blackbox variational inference. 54

BLSTM bidirectional LSTM. 135

CASA computational auditory scene analysis. 67

CBF Chinese bamboo flute. 110–120, 204, 208

CNN convolutional neural network. 27, 58, 59, 145, 166

DBBs detection bounding boxes. 65, 92–94, 97

DKF Deep Kalman Filter. 158, 159, 163

DLVM deep latent variable model. 32

DNN deep neural network. 20, 22, 23, 26–28, 32, 34, 35, 40, 41, 44, 55, 58, 64, 68, 109,

128, 130, 131, 141, 145, 146, 169, 170

DPGM deep probabilistic generative model. 3, 4, 20, 22, 23, 44, 55, 66, 69–71, 74, 122,

128, 129, 131, 136, 137, 144, 145, 148, 166–170, 208

DVAE dynamical variational auto-encoder. 4, 22, 23, 44, 45, 47, 66, 69, 71, 74–81, 83–

89, 92, 93, 95–97, 99–104, 106, 108–116, 118, 120–123, 127–129, 131, 145, 146,

148–150, 156, 158, 160, 163, 164, 166–168, 170, 180, 182, 187, 189, 203

197

198 Acronyms

ELBO Evidence Lower BOund. 29, 50–55, 81, 82, 85–87, 102, 109, 130, 133, 134, 154,

182, 184

EM expectation-maximization. 50, 51, 53, 77, 97, 128, 140, 169

ESTOI extended short-time objective intelligibility. 136, 158–160

FA factor analysis. 32, 37, 39, 40

factorized HMMs factorized hidden Markov models. 68

FDSD Fréchet Deep Speech Distance. 159, 163

FF feed-forward. 154, 155

FN false negatives. 98–100, 103, 105

FP false positives. 98–100, 103, 105

GAN generative adversarial network. 26, 70, 71

GMM Gaussian mixture model. 33, 35, 42

GP-VAE Gaussian process variational autoencoder. 46, 48

GPT Generative Pre-trained Transformer. 63

GRU gated recurrent units. 57

HiT-DVAE hierarchical Transformer dynamical variational auto-encoder. 4, 23, 148,

150–161, 163, 164, 204

HMM hidden Markov model. 41–44, 68

HMM-GMM hidden Markov model - gaussian mixture model. 43, 64

i.i.d. independently and identically distributed. 31, 32, 41

IBM ideal binary mask. 67, 68, 114

ICA independent component analysis. 39, 40

199

IDF1 identity F1 score. 98, 99, 103, 105

IDS number of identity switches. 98, 99

IS Itakura-Saito. 110, 131, 153

JPDAF joint probabilistic data association filter. 65

KL Kullback-Leibler. 50–52, 83, 110, 131, 136, 153

Latent SDE latent stochastic differential equations. 46

LDA latent Dirichlet allocation. 64

LDS linear(-Gaussian) dynamical system. 43, 44, 57

LGM linear Gaussian model. 32, 37–40, 43, 44

LMMSE linear minimum mean-square-error. 67, 132

LN Layer normalization. 154

LSTM long short-term memory. 57, 59, 97, 114, 135, 136, 140, 154, 164

LV latent variable. 129, 131, 135, 144

LVM latent variable model. 23, 29–33, 35, 37, 39–41, 43, 46, 48, 49, 68, 166, 169, 170

MCMC Markov Chain Monte Carlo. 28, 49

MHA multi-head attention. 62

MHCA multi-head cross-attention. 155–157, 160

MHSA multi-head self-attention. 154, 155, 157

MHT multiple hypothesis tracking. 65

ML mostly lost. 98, 99, 103, 105

MLE maximum likelihood estimation. 26

200 Acronyms

MLP multilayer perceptron. 27, 135

MOT multi-object tracking. 4, 23, 65, 66, 74, 76, 85, 92, 93, 95–99, 103, 105, 108,

112–114, 118, 120–123, 166, 167, 204, 207, 208

MOTA multi-object tracking accuracy. 98, 99, 103–106, 121, 122, 204

MOTP multi-object tracking precision. 98, 99, 103, 105

MT mostly tracked. 98, 99, 103, 105

MTT Multi-target tracking. 64, 65

NA noise-agnostic. 127, 129, 133–135, 137, 143–145, 167

NCE noise contrastive estimation. 28

ND noise-dependent. 127, 129, 133–136, 139, 143–145, 167

NMF non-negative matrix factorization. 68, 70, 113, 114, 116, 117, 127, 128, 131, 134,

136, 140, 141, 145, 146, 167, 169

NO noisy observations. 129, 131, 135, 144

NOLV noisy observations and latent variables. 129, 131, 135, 137, 144

PCA principal components analysis. 39

PDF probability density function. 26–28, 109, 207

PDM probabilistic discriminative model. 20

PESQ perceptual evaluation of speech quality. 115, 116, 119, 120, 136, 139, 158–160

PGM probabilistic generative model. 20–23, 170

PPCA probabilistic principal components analysis. 39

RFSs random finite sets. 65

RMSE root mean squared error. 115, 116, 119, 120, 158

201

RNN recurrent neural network. 27, 44, 45, 56–60, 63, 66, 69, 130, 148–150, 166, 185

RNNs recurrent neural networks. 56

RTF real-time factor. 136, 140, 141

RVAE Recurrent Variational AutoEncoder. 129, 130, 132, 133, 135, 136, 144, 145, 158,

159, 163

SC-ASS single-channel audio source separation. 4, 23, 67–69, 74, 76, 85, 108–110, 112,

113, 115, 116, 118–123, 128, 129, 166, 167, 193, 194, 204, 208

SDE stochastic differential equation. 29, 48

SE speech enhancement. 4, 23, 126–129, 133, 135–139, 141–146, 166, 167, 170, 204,

208, 209

Seq2Seq sequence to sequence. 56, 57, 59, 60

Seq2Vec sequence to vector. 56

SGD stochastic gradient descent. 55, 85, 88, 128, 134, 146, 169

SI-SDR scale-invariant signal-to-distortion ratio. 115, 116, 119–122, 136, 139, 141–143,

158, 160, 204

SNR signal-to-noise ratio. 134, 139, 141, 143

SRNN stochastic recurrent neural network. 89, 90, 94, 99, 100, 102, 103, 105, 111, 119,

120, 158–160, 163, 164, 185, 186, 205, 207, 208

SS scheduled-sampling. 158–160, 163

SSM state space model. 32, 44

STFT short-time Fourier transform. 67, 109–112, 114, 129–132, 135, 139, 145, 150–

152, 157–159

TF teacher-forcing. 158–160, 163

202 Acronyms

TF time-frequency. 108, 110

TTS text-to-speech. 59

U-NA unsupervised noise-agnostic. 136–138, 140–142, 144, 208, 209

U-ND unsupervised noise-dependent. 137–141, 144, 208, 209

U-NDA unsupervised noise-dependent with noise adaptation. 137, 140, 141

VAE variational auto-encoder. 4, 34, 35, 40, 41, 44, 45, 47, 55, 70, 93, 127, 148, 158,

163, 170

VB Voice Bank. 157–160, 163

Vec2Seq vector to sequence. 56

VEM variational expectation-maximization. 53, 75, 78, 89, 95, 96, 112–114, 118, 121–

123, 128, 136, 146, 166, 167, 204

VI variational inference. 4, 23, 49, 51–53, 75, 77, 81, 97, 99, 123, 166, 169, 170

VQ vector quantization. 35

VQ-VAE Vector-quantised variational autoencoder. 34–37

WSJ0 Wall Street Journal. 110–112, 118, 119, 121, 122, 157–159, 208

LIST OF FIGURES

2.1 The model architecture of Transformer. This figure is adapted from Figure

1 of paper [207]. 61

3.1 Graphical representation of the proposed MixDVAE model. 78

3.2 Overview of the proposed MixDVAE algorithm at a given time frame

t. The DVAE model is pretrained offline using a (synthetic or natural)

single-source dataset. It takes as input the sequence of source vectors,

encodes them into a sequence of latent vectors, which are then decoded

into the reconstructed sequence of source vectors. For a given time frame

t, the MixDVAE algorithm takes as input the observations at time t as

well as the mean and variance vectors estimated by the DVAE model.

By iterating the E-S, E-Z, E-W and M steps, we obtain estimates of the

assignment variable and of each source vector. 89

4.1 Example of tracking result obtained with the proposed MixDVAE algo-

rithm and the two baselines. For clarity of presentation, the simplified

notations s1, o1, and m1 denote the ground-truth source position, the ob-

servation, and the estimated source position, respectively (for Source 1,

and the same for the two other sources). Best seen in color. 101

203

204 LIST OF FIGURES

4.2 Two examples of tracking result obtained with the proposed MixDVAE

algorithm, with and without fine-tuning during the E-Z step. For clarity

of presentation, the simplified notations s1, o1, and m1 denote the ground-

truth source position, the observation, and the estimated position, respec-

tively (for Source 1, and the same for the two other sources). Best seen in

color. 104

4.3 MOTA score obtained by MixDVAE as a function of the number of VEM

iterations, for different values of rΦ. 106

5.1 An example of audio source separation result obtained with the proposed

MixDVAE algorithm and the baselines (speech and CBF power spectro-

grams). Best seen in color. 117

5.2 Evolution of the performance of MixDVAE as a function of the number

of VEM iterations (MOTA score for the MOT task and SI-SDR scores for

the SC-ASS task). 122

6.1 Schematic view of the proposed SE method. The training and test con-

figurations correspond to the two gray boxes depicted on the right side of

the figure. 133

6.2 Example of SE results obtained with different methods. In this example,

the noise type is “restaurant” and the SNR of the noisy speech is 0 dB.

Best seen in color. 142

6.3 Example of SE results obtained with different methods. In this example,

the noise type is “speech-shaped noise” and the SNR of the noisy speech

is 5 dB. Best seen in color. 143

7.1 HiT-DVAE model architecture. 153

7.2 LigHT-DVAE model structure. 156

205

7.3 Speech re-synthesis results for two example speech signals with and with-

out swapping w. In the first column, GT s1, recon s1 w1, recon s1 w2

represent the ground truth spectrogram of s1, the spectrogram re-synthesised

from z1, w1, and the spectrogram re-synthesised from z1, w2, respec-

tively. Similar notations apply to s2 in the second column. 162

8.1 Conversation with ChatGPT about the ultimate aim behind the develop-

ment of AI. This conversation is generated by GPT-3.5. 174

8.2 Conversation with ChatGPT about the relationship between humans and

AI. This conversation is generated by GPT-3.5. 175

8.3 Conversation with ChatGPT about what is a good way to deploy AI. This

conversation is generated by GPT-3.5. 176

8.4 A picture of how people will live with AI in the future generated by

DALL·E. The prompt used to generate this picture is “Please draw me

a picture of how people will live with AI in the future.” 177

A.1 Schema of the SRNN model architecture. The “plus” symbol represents

the concatenation of the input vectors. 186

A.2 Examples of tracking result obtained with the proposed MixDVAE algo-

rithm and the two baselines. For clarity of presentation, the simplified

notations s1, o1, and m1 denote the ground-truth source position, the ob-

servation, and the estimated position, respectively (for Source 1, and the

same for the two other sources). Best seen in color. 192

A.3 Examples of audio source separation results obtained with the proposed

MixDVAE algorithm and the baselines. Best seen in color. 196

206 LIST OF FIGURES

LIST OF TABLES

2.1 The PDF forms of different generative models. In all of the models, x

represents the data and θ represents the parameters of the model. Other

symbols used in a specific model will be explained in the corresponding

paragraph. 26

3.1 Summary of the variable notations. 77

4.1 MOT results for short (T = 60), medium (T = 120), and long (T = 300)

sequences. 99

4.2 Capacity of the SRNN model pre-trained at three data scales of the syn-

thetic trajectories dataset. SRNN-full, SRNN-half, and SRNN-quarter

stand for SRNN pre-trained on the totality, half of and quarter of our orig-

inal training set, respectively. 102

4.3 MOT results obtained by MixDVAE with SRNN pre-trained at the three

data scales. The results are reported for the short sequence test subset

(T = 60 frames). 103

4.4 MOT results obtained by MixDVAE with and without the fine-tuning of

SRNN. The results are reported for the short, medium and long sequence

test subsets (T = 60, 120, and 300 frames, respectively). 103

207

208 LIST OF TABLES

4.5 Results obtained by MixDVAE on MOT17-3T (short sequences subset)

for different values of rΦ. The values on the left (resp. right) side of the

slashes are obtained without (resp. with) the fine-tuning of SRNN in the

E-Z Step. 105

5.1 SC-ASS results for short (T = 50), medium (T = 100), and long (T =

300) sequences. 116

5.2 Capacity of the SRNN model pre-trained at three data scales of the WSJ0

and the CBF datasets. SRNN-full, SRNN-half, and SRNN-quarter stand

for SRNN pre-trained on the totality, half of and quarter of our original

training set, respectively. 119

5.3 SC-ASS results obtained by MixDVAE with SRNN pre-trained at the

three data scales. The results are reported for the short sequence test

subset (T = 50). 119

5.4 SC-ASS results obtained by MixDVAE with and without the fine-tuning

of SRNN. The results are reported for the short (T = 50), medium (T =

100) and long (T = 300) test sequence subsets. 120

5.5 Averaged processing time per sequence for the MOT task. 122

5.6 Pre-training computational cost on different datasets at different scales. . 122

6.1 SE results for different variants of the dynamical DPGM model. U-NA

stands for unsupervised noise-agnostic and U-ND stands for unsupervised

noise-dependent, U-NDA stands for U-ND training followed by noise

adaptation fine-tuning. The best scores are in bold and the second best

scores are underlined. 137

6.2 SE results compared with baselines. S stands for supervised, U-NA stands

for unsupervised noise-agnostic and U-ND stands for unsupervised noise-

dependent. The best scores are in bold and the second best scores are

underlined. 138

6.3 RTF of different models during inference. The best scores are in bold. . . 140

209

6.4 SE results compared with baselines. U-NA stands for unsupervised noise-

agnostic and U-ND stands for unsupervised noise-dependent. The best

scores are in bold and the second best scores are underlined. 144

7.1 Speech spectrograms analysis-resynthesis results. 159

7.2 Speech spectrograms analysis-resynthesis results: Ablation studies on the

HiT/LigHT-DVAE models structure. 161

7.3 Speech spectrograms generation results. 163

210 LIST OF TABLES

LIST OF ALGORITHMS

1 MixDVAE algorithm . 88

2 Cascade initialization of the position vector sequence 187

3 Synthetic trajectories generation . 188

211

212 LIST OF ALGORITHMS

BIBLIOGRAPHY

[1] Andrea Agostinelli, Timo I. Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, An-

toine Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi,

Matt Sharifi, Neil Zeghidour, and Christian Frank. Musiclm: Generating music

from text. arXiv preprint arXiv:2301.11325, 2023.

[2] Nasim Alamdari, Arian Azarang, and Nasser Kehtarnavaz. Improving deep speech

denoising by noisy2noisy signal mapping. Applied Acoustics, 172:107631, 2019.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric

Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang

Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates,

Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,

Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony

Han, Lappi Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin,

Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang, An-

drew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan,

Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sen-

gupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong Wang,

Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang Wu,

Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan, and

Zhenyao Zhu. Deep speech 2 : End-to-end speech recognition in english and man-

darin. In Proceedings of the International Conference on Machine Learning, pages

173–182. PMLR, 2016.

213

214 BIBLIOGRAPHY

[4] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. People-tracking-by-

detection and people-detection-by-tracking. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2008.

[5] Maryam Babaee, Zimu Li, and Gerhard Rigoll. Occlusion handling in tracking

multiple people using rnn. In IEEE International Conference on Image Processing,

pages 2715–2719, 2018.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2016.

[7] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271, 2018.

[8] Yutong Ban, Xavier Alameda-Pineda, Laurent Girin, and Radu Horaud. Variational

bayesian inference for audio-visual tracking of multiple speakers. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 43(5):1761–1776, 2021.

[9] Yoshiaki Bando, Masato Mimura, Katsutoshi Itoyama, Kazuyoshi Yoshii, and Tat-

suya Kawahara. Statistical speech enhancement based on probabilistic integration

of variational autoencoder and non-negative matrix factorization. In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, 2018.

[10] Yaakov Bar-Shalom, Peter K. Willett, and Xin Tian. Tracking and Data Fusion: A

Handbook of Algorithms. YBS Publishing, 2011.

[11] Leonard E. Baum. An inequality and associated maximization technique in statis-

tical estimation for probabilistic functions of Markov processes. In Inequalities III:

Proceedings of the Third Symposium on Inequalities, pages 1–8. Academic Press,

1972.

[12] Anthony J. Bell and Terrence J. Sejnowski. An information-maximization approach

215

to blind separation and blind deconvolution. Neural Computation, 7(6):1129–1159,

1995.

[13] Jacob Benesty, Shoji Makino, and Jingdong Chen. Speech Enhancement. Springer

Berlin, Heidelberg, 2005.

[14] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sam-

pling for sequence prediction with recurrent neural networks. In Advances in Neu-

ral Information Processing Systems. Curran Associates, Inc., 2015.

[15] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1798–1828, 2013.

[16] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé. Tracking without bells

and whistles. In IEEE/CVF International Conference on Computer Vision, pages

941–951, 2019.

[17] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking per-

formance: The CLEAR MOT metrics. EURASIP Journal on Image and Video

Processing, 2008:10, 2008.

[18] Dimitris Bertsimas, Colin Pawlowski, and Ying Daisy Zhuo. From predictive meth-

ods to missing data imputation: An optimization approach. Journal of Machine

Learning Research, 18(196):1–39, 2018.

[19] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple

online and realtime tracking. In IEEE International Conference on Image Process-

ing, pages 3464–3468, 2016.

[20] Xiaoyu Bie, Laurent Girin, Simon Leglaive, Thomas Hueber, and Xavier Alameda-

Pineda. A benchmark of dynamical variational autoencoders applied to speech

spectrogram modeling. In Proceedings Interspeech Conference, 2021.

216 BIBLIOGRAPHY

[21] Xiaoyu Bie, Wen Guo, Simon Leglaive, Laurent Girin, Francesc Moreno-Noguer,

and Xavier Alameda-Pineda. HiT-DVAE: Human motion generation via Hierarchi-

cal Transformer Dynamical VAE. arXiv preprint arxiv:2204.01565, 2022.

[22] Xiaoyu Bie, Simon Leglaive, Xavier Alameda-Pineda, and Laurent Girin. Unsuper-

vised speech enhancement using dynamical variational autoencoders. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 30:2993–3007, 2022.

[23] Simon Bing, Vincent Fortuin, and Gunnar Ratsch. On disentanglement in gaus-

sian process variational autoencoders. In Symposium on Advances in Approximate

Bayesian Inference, 2022.

[24] Christopher M. Bishop. Pattern Recognition and Machine Learning. Information

Science and Statistics. Springer New York, NY, 1 edition, 2006.

[25] Mikołaj Bińkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen,

Norman Casagrande, Luis C. Cobo, and Karen Simonyan. High fidelity speech

synthesis with adversarial networks. In International Conference on Learning Rep-

resentations, 2020.

[26] Samuel S. Blackman and Robert Popoli. Design and Analysis of Modern Tracking

Systems. Artech House radar library. Artech House, 1999.

[27] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

[28] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma

Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Ni-

ladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-

szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John

Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren

Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori

Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,

217

Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth

Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark

Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina

Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu

Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele

Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen

Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel

Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christo-

pher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf

Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa,

Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori,

Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Ji-

ajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei

Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng,

Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation mod-

els. arXiv preprint arXiv:2108.07258, 2022.

[29] Albert S. Bregman. Auditory Scene Analysis: The Perceptual Organization of

Sound. The MIT Press, 1990.

[30] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. Language models are few-shot learners. In Advances in Neural Informa-

tion Processing Systems. Curran Associates, Inc., 2020.

[31] Guillaume Carbajal, Julius Richter, and Timo Gerkmann. Guided variational au-

toencoder for speech enhancement with a supervised classifier. In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, 2021.

218 BIBLIOGRAPHY

[32] Jean-Francois Cardoso and Antoine Souloumiac. Blind beamforming for non-

gaussian signals. IEE Proceedings F (Radar and Signal Processing), 140(6):362–

370, December 1993.

[33] Francesco Paolo Casale, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and Ni-

colo Fusi. Gaussian process prior variational autoencoders. In Advances in Neural

Information Processing Systems. Curran Associates, Inc., 2018.

[34] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha

Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer:

Reinforcement learning via sequence modeling. In Advances in Neural Information

Processing Systems, pages 15084–15097. Curran Associates, Inc., 2021.

[35] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared

Kaplan, Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex

Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry,

Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea

Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-

lipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis, Eliz-

abeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin,

S. Arun Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant

Misra, Evan Morikawa, Alec Radford, Matthew M. Knight, Miles Brundage, Mira

Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCan-

dlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models

trained on code. arXiv preprint arXiv:2107.03374, 2021.

[36] E. Colin Cherry. Some experiments on the recognition of speech, with one and

with two ears. Journal of the Acoustical Society of America, 25:975–979, 1953.

[37] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using RNN encoder–decoder for statistical machine translation. In Proceedings of

219

the Conference on Empirical Methods in Natural Language Processing. Associa-

tion for Computational Linguistics, 2014.

[38] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto

Tagliaferri, and Francisco Herrera. Deep learning in video multi-object tracking:

A survey. Neurocomputing, 381:61–88, 2020.

[39] Pierre Comon and Christian Jutten. Handbook of Blind Source Separation: Inde-

pendent component analysis and applications. Academic Press, 2010.

[40] Alp Kucukelbir David M. Blei and Jon D. McAuliffe. Variational inference:

A review for statisticians. Journal of the American Statistical Association,

112(518):859–877, 2017.

[41] David Dean, Ahilan Kanagasundaram, Houman Ghaemmaghami, Md. Hafizur

Rahman, and Sridha Sridharan. The QUT-NOISE-SRE protocol for the evaluation

of noisy speaker recognition. In Proceedings Interspeech Conference, 2015.

[42] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity

neural audio compression. Transactions on Machine Learning Research, 2023.

Featured Certification, Reproducibility Certification.

[43] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Statistical Society:

Series B (Methodological), 39(1):1–22, 1977.

[44] Patrick Dendorfer, Aljoša Ošep, Anton Milan, Konrad Schindler, Daniel Cremers,

Ian Reid, Stefan Roth, and Laura Leal-Taixé. MOTChallenge: A benchmark for

single-camera multiple target tracking. International Journal of Computer Vision,

129:845–881, 2021.

[45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Pro-

ceedings of the Conference of the North American Chapter of the Association for

220 BIBLIOGRAPHY

Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers). Association for Computational Linguistics, 2019.

[46] Caglayan Dicle, Octavia I. Camps, and Mario Sznaier. The way they move: Track-

ing multiple targets with similar appearance. In IEEE International Conference on

Computer Vision, pages 2304–2311, 2013.

[47] Peter J. Diggle and Richard J. Gratton. Monte carlo methods of inference for im-

plicit statistical models. Journal of the Royal Statistical Society. Series B (Method-

ological), 46(2):193–227, 1984.

[48] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth

16x16 words: Transformers for image recognition at scale. In International Con-

ference on Learning Representations, 2021.

[49] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep

learning. arXiv preprint arXiv:1603.07285, 2016.

[50] Garry A Einicke and Langford B White. Robust extended Kalman filtering. IEEE

Transactions on Signal Processing, 47(9):2596–2599, 1999.

[51] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan.

Object detection with discriminatively trained part-based models. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[52] Cédric Févotte, Emmanuel Vincent, and Alexey Ozerov. Single-Channel Audio

Source Separation with NMF: Divergences, Constraints and Algorithms, pages 1–

24. Springer International Publishing, 2018.

[53] Vincent Fortuin, Dmitry Baranchuk, Gunnar Raetsch, and Stephan Mandt. Gp-vae:

Deep probabilistic time series imputation. In Proceedings of the International Con-

ference on Artificial Intelligence and Statistics, pages 1651–1661. PMLR, 2020.

221

[54] Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and

Gunnar Rätsch. Som-vae: Interpretable discrete representation learning on time

series. In International Conference on Learning Representations, 2019.

[55] Marco Fraccaro, Søren Kaae Sø nderby, Ulrich Paquet, and Ole Winther. Sequential

neural models with stochastic layers. In Advances in Neural Information Process-

ing Systems. Curran Associates, Inc., 2016.

[56] Michael C Fu. Handbook of Simulation Optimization. Springer New York, NY,

2014.

[57] Szu-Wei Fu, Chien-Feng Liao, Yu Tsao, and Shou-De Lin. MetricGAN: Gener-

ative adversarial networks based black-box metric scores optimization for speech

enhancement. In Proceedings of the International Conference on Machine Learn-

ing, 2019.

[58] Szu-Wei Fu, Cheng Yu, Tsun-An Hsieh, Peter William VanHarn Plantinga, Mirco

Ravanelli, Xugang Lu, and Yu Tsao. MetricGAN+: An improved version of Met-

ricGAN for speech enhancement. In Proceedings Interspeech Conference, 2021.

[59] Szu-Wei Fu, Cheng Yu, Kuo-Hsuan Hung, Mirco Ravanelli, and Yu Tsao.

MetricGAN-U: Unsupervised speech enhancement / dereverberation based only

on noisy / reverberated speech. In IEEE International Conference on Acoustics,

Speech and Signal Processing, 2022.

[60] Szu-Wei Fu, Cheng Yu, Kuo-Hsuan Hung, Mirco Ravanelli, and Yu Tsao.

MetricGAN-U: Unsupervised speech enhancement-dereverberation based only on

noisy/reverberated speech. In IEEE International Conference on Acoustics, Speech

and Signal Processing, 2022.

[61] Takuya Fujimura, Yuma Koizumi, Kohei Yatabe, and Ryoichi Miyazaki. Noisy-

target training: A training strategy for DNN-based speech enhancement without

clean speech. In Proceedings European Signal Processing Conference, 2021.

222 BIBLIOGRAPHY

[62] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative matrix fac-

torization with the Itakura-Saito divergence: With application to music analysis.

Neural Computation, 21(3):793–830, 2009.

[63] John S. Garofolo, David Graff, Doug Paul, and David Pallett. CSR-I (WSJ0)

Sennheiser LDC93S6B. Philadelphia: Linguistic Data Consortium, 1993.

[64] Dan Geiger, Thomas Verma, and Judea Pearl. Identifying independence in

Bayesian networks. Networks, 20(5):507–534, 1990.

[65] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85(410):398–

409, 1990.

[66] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made:

Masked autoencoder for distribution estimation. In Proceedings of the Interna-

tional Conference on Machine Learning, volume 37, pages 881–889. PMLR, 2015.

[67] Samuel J. Gershman and Noah D. Goodman. Amortized inference in probabilistic

reasoning. In Proceedings of the Annual Meeting of the Cognitive Science Society,

2014.

[68] Zoubin Ghahramani and Geoffrey E. Hinton. Parameter estimation for linear dy-

namical systems. Technical Report, University of Toronto, 1996.

[69] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching

state-space models. Neural Computation, 12(4):831–864, 2000.

[70] Zoubin Ghahramani and Michael I. Jordan. Factorial hidden markov models. In

Advances in Neural Information Processing Systems. MIT Press, 1995.

[71] Laurent Girin, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, and

Xavier Alameda-Pineda. Dynamical variational autoencoders: A comprehensive

review. Foundations and Trends in Machine Learning, 15(1-2):1–175, 2021.

223

[72] Laurent Girin, Fanny Roche, Thomas Hueber, and Simon Leglaive. Notes on the

use of variational autoencoders for speech and audio spectrogram modeling. In

Proceedings International Conference on Digital Audio Effects (DAFx), 2019.

[73] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

[74] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in Neural Information Processing Systems. Curran Associates, Inc.,

2014.

[75] Nathaniel R. Goodman. Statistical Analysis Based on a Certain Multivariate Com-

plex Gaussian Distribution (An Introduction). The Annals of Mathematical Statis-

tics, 34(1):152 – 177, 1963.

[76] Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-

level cognition. Proc. R. Soc. A, 478:20210068, 2022.

[77] Robert Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4–29, 1984.

[78] Ulf Grenander and Michael I. Miller. Representations of knowledge in com-

plex systems. Journal of the Royal Statistical Society. Series B (Methodological),

56(4):549–603, 1994.

[79] Daniel W. Griffin and Jae S. Lim. Signal estimation from modified short-time

Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, 32(2):236–243, 1984.

[80] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu,

Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Con-

former: Convolution-augmented Transformer for Speech Recognition. In Proceed-

ings Interspeech Conference, pages 5036–5040, 2020.

[81] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new esti-

mation principle for unnormalized statistical models. In Proceedings of the Interna-

224 BIBLIOGRAPHY

tional Conference on Artificial Intelligence and Statistics, pages 297–304. PMLR,

2010.

[82] W. Keith Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

[83] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In

IEEE International Conference on Computer Vision, pages 2980–2988, 2017.

[84] John R. Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clus-

tering: Discriminative embeddings for segmentation and separation. In IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing, pages 31–35,

2016.

[85] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,

Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learn-

ing basic visual concepts with a constrained variational framework. In International

Conference on Learning Representations, 2017.

[86] Geoffrey E. Hinton. Training products of experts by minimizing contrastive diver-

gence. Neural Computation, 14(8):1771–1800, 2002.

[87] Geoffrey E. Hinton. Learning multiple layers of representation. Trends in Cognitive

Sciences, 11(10):428–34, 2007.

[88] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-

els. In Advances in Neural Information Processing Systems, pages 6840–6851.

Curran Associates, Inc., 2020.

[89] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

putation, 9(8):1735–1780, 1997.

[90] Harold Hotelling. Analysis of a complex of statistical variables into principal com-

ponents. Journal of Educational Psychology, 24(6):417–441, 1933.

225

[91] Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised learning of disentan-

gled and interpretable representations from sequential data. In Advances in Neural

Information Processing Systems. Curran Associates, Inc., 2017.

[92] Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li,

Zhenhui Ye, Jinglin Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio

generation with prompt-enhanced diffusion models. In Proceedings of the Interna-

tional Conference on Machine Learning, pages 13916–13932. PMLR, 2023.

[93] Rongjie Huang, Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu, Yi Ren, and Zhou

Zhao. Fastdiff: A fast conditional diffusion model for high-quality speech synthe-

sis. In Proceedings of the International Joint Conference on Artificial Intelligence,

pages 4157–4163, 2022.

[94] Aapo Hyvärinen. Estimation of non-normalized statistical models by score match-

ing. Journal of Machine Learning Research, 6(24):695–709, 2005.

[95] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and

applications. Neural Networks, 13(4):411–430, 2000.

[96] Metod Jazbec, Matt Ashman, Vincent Fortuin, Michael Pearce, Stephan Mandt, and

Gunnar Rätsch. Scalable gaussian process variational autoencoders. In Proceedings

of International Conference on Artificial Intelligence and Statistics, pages 3511–

3519. PMLR, 2021.

[97] Metod Jazbec, Michael Arthur Leopold Pearce, and Vincent Fortuin. Factorized

gaussian process variational autoencoders. In Symposium on Advances in Approxi-

mate Bayesian Inference, 2021.

[98] Qiang Ji. Probabilistic Graphical Models for Computer Vision. Academic Press,

Oxford, 2020.

[99] Ian T. Jolliffe. Principal Component Analysis. Springer New York, NY, 2002.

226 BIBLIOGRAPHY

[100] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul.

An introduction to variational methods for graphical models. Machine Learning,

37:183–233, 1999.

[101] Rudolf Emil Kalman. A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82(1):35–45, 1960.

[102] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling

laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[103] Madhav Mahesh Kashyap, Anuj Tambwekar, Krishnamoorthy Manohara, and

S. Natarajan. Speech denoising without clean training data: a noise2noise ap-

proach. In Proceedings Interspeech Conference, 2021.

[104] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[105] Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.

Semi-supervised learning with deep generative models. In Advances in Neural

Information Processing Systems. Curran Associates, Inc., 2014.

[106] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,

and Max Welling. Improved variational inference with inverse autoregressive flow.

In Advances in Neural Information Processing Systems, page 4743–4751. Curran

Associates Inc., 2016.

[107] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Inter-

national Conference on Learning Representations, 2014.

[108] John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The Diffi-

culty of Learning Long-Term Dependencies, pages 237–243. IEEE, 2001.

[109] Rahul Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. In Advances

in Approximate Bayesian Inference, December 2015.

227

[110] Harold W Kuhn. The Hungarian method for the assignment problem. Naval re-

search logistics quarterly, 2(1-2):83–97, 1955.

[111] Amos Lapidoth. A Foundation in Digital Communication. Cambridge University

Press, Cambridge, UK, second edition, February 2017.

[112] Clément Laroche, Matthieu Kowalski, Hélène Papadopoulos, and Gaël Richard.

A structured nonnegative matrix factorization for source separation. In European

Signal Processing Conference, pages 2033–2037, 2015.

[113] Clément Laroche, Hélène Papadopoulos, Matthieu Kowalski, and Gaël Richard.

Drum extraction in single channel audio signals using multi-layer non negative ma-

trix factor deconvolution. In IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 46–50, 2017.

[114] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. A tutorial on

energy-based learning. Predicting Structured Data, 2:9, 2006.

[115] Yann LeCun, Larry D. Jackel, Leon Bottou, A. Brunot, Corinna Cortes, John S.

Denker, Harris Drucker, Isabelle Guyon, Urs A. Muller, Eduard Sackinger, Patrice

Simard, and Vladimir Vapnik. Comparison of learning algorithms for handwritten

digit recognition. In International Conference on Artificial Neural Networks, pages

53–60, 1995.

[116] Simon Leglaive, Xavier Alameda-Pineda, Laurent Girin, and Radu Horaud. A

recurrent variational autoencoder for speech enhancement. In IEEE International

Conference on Acoustics, Speech and Signal Processing, 2020.

[117] Simon Leglaive, Laurent Girin, and Radu Horaud. A variance modeling frame-

work based on variational autoencoders for speech enhancement. In Proceedings

Workshop on Machine Learning for Signal Processing, 2018.

[118] Simon Leglaive, Laurent Girin, and Radu Horaud. Semi-supervised multichannel

speech enhancement with variational autoencoders and non-negative matrix factor-

228 BIBLIOGRAPHY

ization. In IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, 2019.

[119] Simon Leglaive, Umut Şimşekli, Antoine Liutkus, Laurent Girin, and Radu Ho-

raud. Speech enhancement with variational autoencoders and alpha-stable distribu-

tions. In IEEE International Conference on Acoustics, Speech and Signal Process-

ing, 2019.

[120] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud.

Scalable gradients for stochastic differential equations. In Proceedings of the In-

ternational Conference on Artificial Intelligence and Statistics, pages 3870–3882.

PMLR, 2020.

[121] Yiming Liang and Yue Zhou. LSTM multiple object tracker combining multiple

cues. In IEEE International Conference on Image Processing, pages 2351–2355,

2018.

[122] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of re-

current neural networks for sequence learning. arXiv preprint arXiv:1506.00019,

2015.

[123] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for

goodness-of-fit tests. In Proceedings of the International Conference on Machine

Learning, pages 276–284. PMLR, 2016.

[124] Antoine Liutkus, Roland Badeau, and Gäel Richard. Gaussian processes for

underdetermined source separation. IEEE Transactions on Signal Processing,

59(7):3155–3167, 2011.

[125] Philipos C Loizou. Speech enhancement: Theory and practice. CRC press, 2007.

[126] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm

restarts. In International Conference on Learning Representations, 2017.

[127] Yen-Ju Lu, Zhong-Qiu Wang, Shinji Watanabe, Alexander Richard, Cheng Yu, and

Yu Tsao. Conditional diffusion probabilistic model for speech enhancement. In

229

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

7402–7406, 2022.

[128] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, and Tae-

Kyun Kim. Multiple object tracking: A literature review. Artificial Intelligence,

293:103448, 2021.

[129] Yi Luo, Zhuo Chen, and Takuya Yoshioka. Dual-path rnn: Efficient long sequence

modeling for time-domain single-channel speech separation. In IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 46–50, 2020.

[130] Yi Luo and Nima Mesgarani. Tasnet: Time-domain audio separation network for

real-time, single-channel speech separation. In IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 696–700, 2018.

[131] Yi Luo and Nima Mesgarani. Conv-tasnet: Surpassing ideal time–frequency mag-

nitude masking for speech separation. IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 27(8):1256–1266, 2019.

[132] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches

to attention-based neural machine translation. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing. Association for Computa-

tional Linguistics, 2015.

[133] James MacQueen. Some methods for classification and analysis of multivariate

observations. In Proceedings of the Berkeley symposium on mathematical statistics

and probability, pages 281–297, 1967.

[134] Ronald P. S. Mahler. Statistical Multisource-Multitarget Information Fusion.

Artech House, Inc., 2007.

[135] Santiago Manen, Michael Gygli, Dengxin Dai, and Luc Van Gool. Pathtrack: Fast

trajectory annotation with path supervision. In IEEE International Conference on

Computer Vision, pages 290–299, 2017.

230 BIBLIOGRAPHY

[136] Geoff J. McLachlan and Kaye E. Basford. Mixture models: Inference and applica-

tions to clustering. Marcel Dekker, 1988.

[137] Geoffrey J. McLachlan, Sharon X. Lee, and Suren I. Rathnayake. Finite mixture

models. Annual Review of Statistics and Its Application, 6(Volume 6, 2019):355–

378, 2019.

[138] Anton Milan, S. Hamid Rezatofighi, Anthony Dick, Ian Reid, and Konrad

Schindler. Online multi-target tracking using recurrent neural networks. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, page 4225–4232. AAAI

Press, 2017.

[139] Kevin P. Murphy. Switching Kalman Filters. Citeseer, 1998.

[140] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,

2022.

[141] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press,

2023.

[142] Gautham J. Mysore and Paris Smaragdis. A non-negative approach to semi-

supervised separation of speech from noise with the use of temporal dynamics. In

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

17–20, 2011.

[143] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam,

Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards

photorealistic image generation and editing with text-guided diffusion models. In

Proceedings of the International Conference on Machine Learning, pages 16784–

16804. PMLR, 2022.

[144] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou,

Silvio Savarese, and Caiming Xiong. A conversational paradigm for program syn-

thesis. arXiv preprint arXiv:2203.13474, 2022.

231

[145] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex

Graves, and Koray Kavukcuoglu. Conditional image generation with pixelcnn de-

coders. In Advances in Neural Information Processing Systems, page 4797–4805.

Curran Associates Inc., 2016.

[146] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[147] Alexey Ozerov and Cédric Fevotte. Multichannel nonnegative matrix factorization

in convolutive mixtures for audio source separation. IEEE Transactions on Audio,

Speech, and Language Processing, 18(3):550–563, 2010.

[148] Alexey Ozerov, Cédric Févotte, and Maurice Charbit. Factorial scaled hidden

markov model for polyphonic audio representation and source separation. In IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics, pages 121–

124, 2009.

[149] Alexey Ozerov, Antoine Liutkus, Roland Badeau, and Gaël Richard. Coding-based

informed source separation: Nonnegative tensor factorization approach. IEEE

Transactions on Audio, Speech, and Language Processing, 21(8):1699–1712, 2013.

[150] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,

and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and

inference. Journal of Machine Learning Research, 22(57):1–64, 2021.

[151] Manuel Pariente, Antoine Deleforge, and Emmanuel Vincent. A statistically prin-

cipled and computationally efficient approach to speech enhancement using varia-

tional autoencoders. In Proceedings Interspeech Conference, Graz, Austria, 2019.

[152] Giorgio Parisi. Correlation functions and computer simulations. Nuclear Physics

B, 180(3):378–384, 1981.

[153] Giorgio Parisi. Statistical Field Theory. Addison-Wesley, 1988.

[154] Santiago Pascual, Antonio Bonafonte, and Joan Serrà. SEGAN: Speech enhance-

ment generative adversarial network. In Proceedings Interspeech Conference,

2017.

232 BIBLIOGRAPHY

[155] Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Infer-

ence: Foundations and Learning Algorithms. The MIT Press, 2017.

[156] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[157] Lawrence R. Rabiner and Biinghwang Juang. An introduction to hidden Markov

models. IEEE ASSP Magazine, 3(1):4–16, 1986.

[158] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. OpenAI Blog,

1(8):9, 2019.

[159] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.

Hierarchical text-conditional image generation with clip latents. arXiv preprint

arXiv:2204.06125, 2022.

[160] Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Infer-

ence. In Proceedings of the International Conference on Artificial Intelligence and

Statistics, pages 814–822. PMLR, 2014.

[161] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for

Machine Learning. The MIT Press, 2005.

[162] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear

dynamic systems. AIAA Journal, 3(8):1445–1450, 1965.

[163] Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generating diverse high-

fidelity images with vq-vae-2. In Advances in Neural Information Processing Sys-

tems. Curran Associates, Inc., 2019.

[164] Chandan K A Reddy, Vishak Gopal, and Ross Cutler. Dnsmos: A non-intrusive

perceptual objective speech quality metric to evaluate noise suppressors. In IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 6493–

6497, 2021.

233

[165] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 779–788, 2016.

[166] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in Neural

Information Processing Systems. Curran Associates, Inc., 2015.

[167] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan

Liu. Fastspeech: Fast, robust and controllable text to speech. In Advances in

Neural Information Processing Systems. Curran Associates, Inc., 2019.

[168] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normal-

izing flows. In Proceedings of the International Conference on Machine Learning,

pages 1530–1538. PMLR, 2015.

[169] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. In Proceedings

of the International Conference on Machine Learning, pages 1278–1286. PMLR,

2014.

[170] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, and Timo

Gerkmann. Speech enhancement and dereverberation with diffusion-based genera-

tive models. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

31:2351–2364, 2023.

[171] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi.

Performance measures and a data set for multi-target, multi-camera tracking.

In Proceedings of the European Conference on Computer Vision, pages 17–35.

Springer, 2016.

[172] Antony Rix, John Beerends, Michael Hollier, and Andries Hekstra. Perceptual

evaluation of speech quality (PESQ) - A new method for speech quality assessment

234 BIBLIOGRAPHY

of telephone networks and codecs. In IEEE International Conference on Acoustics,

Speech and Signal Processing, 2001.

[173] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The

Annals of Mathematical Statistics, 22(3):400 – 407, 1951.

[174] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer

New York, NY, 2 edition, 2004.

[175] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R. Hershey. SDR –

Half-baked or well done? In IEEE International Conference on Acoustics, Speech

and Signal Processing, 2019.

[176] Mostafa Sadeghi and Romain Serizel. Fast and efficient speech enhancement with

variational autoencoders. In IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 1–5, 2023.

[177] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Tracking the untrackable:

Learning to track multiple cues with long-term dependencies. In IEEE/CVF Inter-

national Conference on Computer Vision, pages 300–311, 2017.

[178] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L

Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim

Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic

text-to-image diffusion models with deep language understanding. In Advances in

Neural Information Processing Systems, pages 36479–36494. Curran Associates,

Inc., 2022.

[179] Fatemeh Saleh, Sadegh Aliakbarian, Hamid Rezatofighi, Mathieu Salzmann, and

Stephen Gould. Probabilistic tracklet scoring and inpainting for multiple object

tracking. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2021.

[180] Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling

235

irregular time series with continuous recurrent units. In Proceedings of the Inter-

national Conference on Machine Learning, pages 19388–19405. PMLR, 2022.

[181] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[182] Paris Smaragdis, Bhiksha Raj, and Madhusudana Shashanka. Supervised and semi-

supervised separation of sounds from single-channel mixtures. In Proceedings of

the International Conference on Independent Component Analysis and Signal Sep-

aration, page 414–421. Springer-Verlag, 2007.

[183] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.

Deep unsupervised learning using nonequilibrium thermodynamics. In Proceed-

ings of the International Conference on Machine Learning, pages 2256–2265.

PMLR, 2015.

[184] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and

Ole Winther. Ladder variational autoencoders. In Advances in Neural Information

Processing Systems, 2016.

[185] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the

data distribution. In Advances in Neural Information Processing Systems. Curran

Associates, Inc., 2019.

[186] Yang Song and Stefano Ermon. Improved techniques for training score-based gen-

erative models. In Advances in Neural Information Processing Systems, pages

12438–12448. Curran Associates, Inc., 2020.

[187] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching:

A scalable approach to density and score estimation. In Uncertainty in Artificial

Intelligence, pages 574–584, 2020.

[188] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano

Ermon, and Ben Poole. Score-based generative modeling through stochastic differ-

ential equations. In International Conference on Learning Representations, 2021.

236 BIBLIOGRAPHY

[189] Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji. Open-

Unmix – A reference implementation for music source separation. Journal of Open

Source Software, 4(41):1667, 2019.

[190] Nicolas Sturmel, Antoine Liutkus, Jonathan Pinel, Laurent Girin, Sylvain Marc-

hand, Gaël Richard, Roland Badeau, and Laurent Daudet. Linear mixing models

for active listening of music productions in realistic studio conditions. In Audio

Engineering Society Convention 132, 2012.

[191] Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and Jianyuan

Zhong. Attention is all you need in speech separation. In IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 21–25, 2021.

[192] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in Neural Information Processing Systems. Curran

Associates, Inc., 2014.

[193] Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press,

2013.

[194] Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations. Cam-

bridge University Press, 2019.

[195] Cees H. Taal, Richard C. Hendriks, Richard Heusdens, and Jesper Jensen. An

algorithm for intelligibility prediction of time–frequency weighted noisy speech.

IEEE Transactions on Audio, Speech, and Language Processing, 19(7):2125–2136,

2011.

[196] Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E. Hinton. Energy-

based models for sparse overcomplete representations. Journal of Machine Learn-

ing Research, 4:1235–1260, 2003.

[197] Joachim Thiemann, Nobutaka Ito, and Emmanuel Vincent. The diverse environ-

ments multi-channel acoustic noise database (DEMAND): A database of multi-

237

channel environmental noise recordings. The Journal of the Acoustical Society of

America, 133:3591–3591, 2013.

[198] Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component

analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodol-

ogy), 61(3):611–622, 1999.

[199] Efthymios Tzinis, Shrikant Venkataramani, Zhepei Wang, Cem Subakan, and Paris

Smaragdis. Two-step sound source separation: Training on learned latent targets. In

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

31–35, 2020.

[200] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo

Larochelle. Neural autoregressive distribution estimation. Journal of Machine

Learning Research, 17(205):1–37, 2016.

[201] Cassia Valentini-Botinhao, Xin Wang, Shinji Takaki, and Junichi Yamagishi. Inves-

tigating RNN-based speech enhancement methods for noise-robust text-to-speech.

In Proceedings Speech Synthesis Workshop, 2016.

[202] Rafael Valle, Kevin J. Shih, Ryan Prenger, and Bryan Catanzaro. Flowtron: an

autoregressive flow-based generative network for text-to-speech synthesis. In In-

ternational Conference on Learning Representations, 2021.

[203] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

WaveNet: A Generative Model for Raw Audio. In Proceedings of Speech Synthesis

Workshop, page 125, 2016.

[204] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recur-

rent neural networks. In Proceedings of the International Conference on Machine

Learning, pages 1747–1756. PMLR, 2016.

[205] Aäron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete repre-

238 BIBLIOGRAPHY

sentation learning. In Advances in Neural Information Processing Systems. Curran

Associates, Inc., 2017.

[206] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Information Sci-

ence and Statistics. Springer New York, NY, 2 edition, 2000.

[207] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in Neural Information Processing Systems. Curran Associates, Inc.,

2017.

[208] Christophe Veaux, Junichi Yamagishi, and Simon King. The Voice Bank corpus:

Design, collection and data analysis of a large regional accent speech database. In

Proceedings of International Committee for Co-ordination and Standardisation of

Speech Databases, 2013.

[209] Emmanuel Vincent, Sharon Gannot, and Tuomas Virtanen. Audio Source Separa-

tion and Speech Enhancement. John Wiley & Sons, Ltd, 2018.

[210] Pascal Vincent. A connection between score matching and denoising autoencoders.

Neural Computation, 23(7):1661–1674, 2011.

[211] Tuomas Virtanen. Monaural sound source separation by nonnegative matrix fac-

torization with temporal continuity and sparseness criteria. IEEE Transactions on

Audio, Speech, and Language Processing, 15(3):1066–1074, 2007.

[212] Ba-ngu Vo, Mahendra Mallick, Yaakov Bar shalom, Stefano Coraluppi, Richard

Osborne III, Ronald Mahler, and Ba-tuong Vo. Multitarget Tracking, pages 1–15.

John Wiley & Sons, Ltd, 2015.

[213] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential fam-

ilies, and variational inference. Foundations and Trends® in Machine Learning,

1(1–2):1–305, 2008.

239

[214] Xingyu Wan, Jinjun Wang, and Sanping Zhou. An online and flexible multi-object

tracking framework using long short-term memory. In IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 1311–13118, 2018.

[215] Changhong Wang, Emmanouil Benetos, Vincent Lostanlen, and Elaine Chew.

Adaptive scattering transforms for playing technique recognition. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 30:1407–1421, 2022.

[216] DeLiang Wang and Guy J. Brown. Computational Auditory Scene Analysis: Prin-

ciples, Algorithms, and Applications. Wiley-IEEE Press, 2006.

[217] DeLiang Wang and Jitong Chen. Supervised speech separation based on deep learn-

ing: An overview. IEEE/ACM Transactions on Audio, Speech, and Language Pro-

cessing, 26(10):1702–1726, 2018.

[218] Simon Welker, Julius Richter, and Timo Gerkmann. Speech Enhancement with

Score-Based Generative Models in the Complex STFT Domain. In Proceedings

Interspeech Conference, pages 2928–2932, 2022.

[219] R. Jonald Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

[220] Scott Wisdom, Efthymios Tzinis, Hakan Erdogan, Ron J. Weiss, Kevin Wilson, and

John R. Hershey. Unsupervised sound separation using mixture invariant training.

In Proceedings of the International Conference on Neural Information Processing

Systems. Curran Associates Inc., 2020.

[221] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime

tracking with a deep association metric. In IEEE International Conference on Im-

age Processing, pages 3645–3649, 2017.

[222] Jun Xiang, Guoshuai Zhang, and Jianhua Hou. Online multi-object tracking based

on feature representation and Bayesian filtering within a deep learning architecture.

IEEE Access, pages 27923–27935, 2019.

240 BIBLIOGRAPHY

[223] Yang Xiang and Changchun Bao. A parallel-data-free speech enhancement method

using multi-objective learning cycle-consistent generative adversarial network.

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:1826–

1838, 2020.

[224] Yang Xiang, Jesper Lisby Højvang, Morten Højfeldt Rasmussen, and

Mads Græsbøll Christensen. A bayesian permutation training deep representation

learning method for speech enhancement with variational autoencoder. In IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 381–

385, 2022.

[225] Bo Yang and Ram Nevatia. Multi-target tracking by online learning of non-linear

motion patterns and robust appearance models. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 1918–1925, 2012.

[226] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the layers: Fast and accu-

rate cnn object detector with scale dependent pooling and cascaded rejection clas-

sifiers. In IEEE Conference on Computer Vision and Pattern Recognition, pages

2129–2137, 2016.

[227] Ozgur Yilmaz and Scott Rickard. Blind separation of speech mixtures via time-

frequency masking. IEEE Transactions on Signal Processing, 52(7):1830–1847,

2004.

[228] Dong Yu and Li Deng. Automatic speech recognition. Springer, 2016.

[229] Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. Permutation invari-

ant training of deep models for speaker-independent multi-talker speech separation.

In IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 241–245, 2017.

[230] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convo-

lutions. In International Conference on Learning Representations, 2016.

241

[231] Guochen Yu, Yutian Wang, Chengshi Zheng, Hui Wang, and Qin Zhang.

CycleGAN-based non-parallel speech enhancement with an adaptive attention-in-

attention mechanism. In Asia-Pacific Signal and Information Processing Associa-

tion Annual Conference, 2021.

[232] Paul Zarchan. Progress in astronautics and aeronautics: fundamentals of Kalman

filtering: a practical approach, volume 208. Aiaa, 2005.

[233] Neil Zeghidour and David Grangier. Wavesplit: End-to-end speech separation by

speaker clustering. IEEE/ACM Transactions on Audio, Speech, and Language Pro-

cessing, 29:2840–2849, 2021.

[234] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep

Learning. arXiv preprint arXiv:2106.11342, 2023.

[235] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fair-

mot: On the fairness of detection and re-identification in multiple object tracking.

International Journal of Computer Vision, 129(11):3069–3087, 2021.

[236] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Balancing learning

and inference in variational autoencoders. Proceedings of the AAAI Conference on

Artificial Intelligence, pages 5885–5892, 2019.

[237] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as points.

In Proceedings European Conference on Computer Vision, 2020.

[238] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Sci-

ence Review, 5(1):44–53, 08 2017.

[239] Harrison Zhu, Carles Balsells-Rodas, and Yingzhen Li. Markovian Gaussian pro-

cess variational autoencoders. In Proceedings of the International Conference on

Machine Learning, pages 42938–42961. PMLR, 2023.

[240] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial networks. In IEEE Interna-

tional Conference on Computer Vision, pages 2242–2251, 2017.

242 BIBLIOGRAPHY

[241] Xiaojin (Jerry) Zhu. Semi-supervised learning literature survey. Technical Report

TR1530, University of Wisconsin-Madison Department of Computer Sciences,

2005.

[242] Bernt Øksendal. Stochastic Differential Equations. Springer Berlin, Heidelberg, 6

edition, 2003.

	Introduction
	Probabilistic Generative Modeling: General Considerations
	Applying (D)PGMs for Multimedia Processing
	Overview of the Thesis
	List of Publications

	Methodological Background
	Probabilistic Generative Models
	Latent Variable Models: An Overview
	LVMs for Static Data
	LVMs for Sequential Data

	Learning and Inference of the Latent Variable Models
	Posterior Intractablility and Approximate Inference
	A General Introduction to Variational Inference
	Exact Inference and EM Algorithms
	Free-Form VI and Mean-Field Approximation
	Fixed-Form VI and Gradient-Based Optimization

	Deep Architectures for Sequential Data Modeling
	Recurrent Neural Networks
	1D Convolutional Neural Networks
	Attention Mechanism and Transformers

	Examples of Applications to Audio, Image, and Video Processing
	Multi-Target Tracking
	Single-Channel Audio Source Separation
	Speech Enhancement

	Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation
	A DPGM for Multi-Source Data
	MixDVAE Model
	Problem Formulation and Notations
	General Principle of the Proposed Model and Solution
	Generative Model
	Inference Model

	MixDVAE Solution: A Variational Expectation-Maximization Algorithm
	E-S Step
	E-Z Step
	E-W Step
	M Step
	MixDVAE Complete Algorithm
	Choice of the DVAE Model

	Application of MixDVAE on MOT
	Application of MixDVAE on MOT
	Setting MixDVAE in the MOT Configuration
	DVAE Pre-training
	Dataset
	Training Details

	MixDVAE Evaluation Set-up
	Dataset
	Algorithm Initialization
	Observation Covariance Matrix
	Hyperparameters
	Baselines
	Evaluation Metrics

	Experimental Results
	Quantitative Analysis
	Qualitative Analysis

	Ablation Studies
	Influence of the Pre-trained DVAE Model Quality
	Influence of the DVAE Fine-tuning
	Influence of the Observation Variance Ratio

	Application of MixDVAE on SC-ASS
	Application of MixDVAE on SC-ASS
	Setting MixDVAE in the SC-ASS Configuration
	DVAE Pre-training
	Dataset
	Pre-processing
	Training Details

	MixDVAE Evaluation Set-up
	Dataset
	Algorithm Initialization
	Observation Covariance Matrix
	Hyperparameters
	Baselines
	Evaluation Metrics.

	Experimental Results
	Quantitative Analysis
	Qualitative Analysis

	Ablation Studies
	Influence of the Pre-trained DVAE Model Quality
	Influence of the DVAE Fine-tuning

	Discussion on the Computational Complexity
	Conclusion

	Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models
	Introduction
	Dynamical DPGM-based SE Method
	Clean Speech Modeling with an RVAE
	Dynamical DPGM-Based Noise Model
	Speech Enhancement with the Inference Model
	Model Optimization

	Experimental Settings
	Datasets and Pre-processing
	Implementation Details and Training Settings
	Baselines and Evaluation Metrics

	Experimental Results
	Comparison of Different Variants under Different Configurations
	Comparison with the Baselines
	Discussion on the Computational Time
	Qualitative Analysis
	Results on Unmatched Pre-train/Test Set

	Conclusion and Further Discussions

	Speech Modeling with a Hierarchical Transformer Dynamical VAE
	Introduction
	Probabilistic Model of HiT-DVAE
	Generative Model
	Inference Model
	Optimization

	Model Architecture of HiT-DVAE and LigHT-DVAE
	HiT-DVAE Encoder
	HiT-DVAE Decoder
	Distinctions with the Original Transformers Architecture
	LigHT-DVAE Adaptations

	Experimental Settings
	Datasets and Pre-processing
	Implementation Details and Training Settings
	Baselines
	Evaluation Metrics

	Experimental Results
	Speech Spectrograms Analysis-Resynthesis Results
	Ablation Studies on Model Structures
	Interpretability of the Global Latent Variable
	Speech Spectrograms Generation Results

	Conclusion

	Conclusion and Further Discussions
	Conclusion
	Insights and Limitations
	Towards a Broader Discussion

	Appendix
	Mixture of DVAEs for Multi-Source Trajectory Modeling and Separation
	MixDVAE Algorithm Calculation Details
	SRNN Implementation Details

	Application of MixDVAE on MOT
	Cascade Initialization in MOT
	MOT Dataset Processing
	MOT Baselines Implementation Details
	More MOT Tracking Examples

	Application of MixDVAE on SC-ASS
	Formulas for SC-ASS
	More SC-ASS Examples

	Unsupervised Speech Enhancement with Deep Dynamical Probabilistic Generative Models
	Posterior Distributions Derivation

	Acronyms
	List of Figures
	List of Tables
	List of Algorithms

