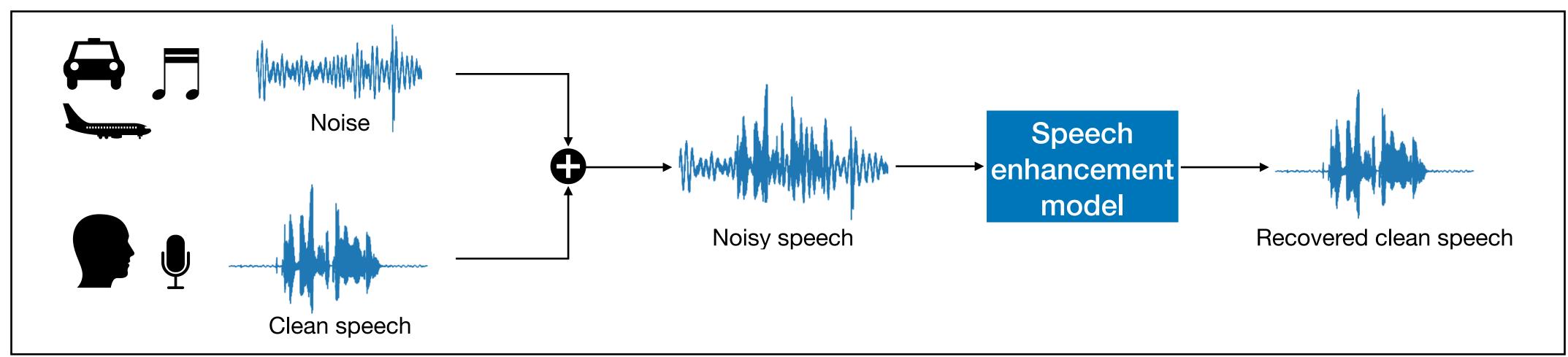
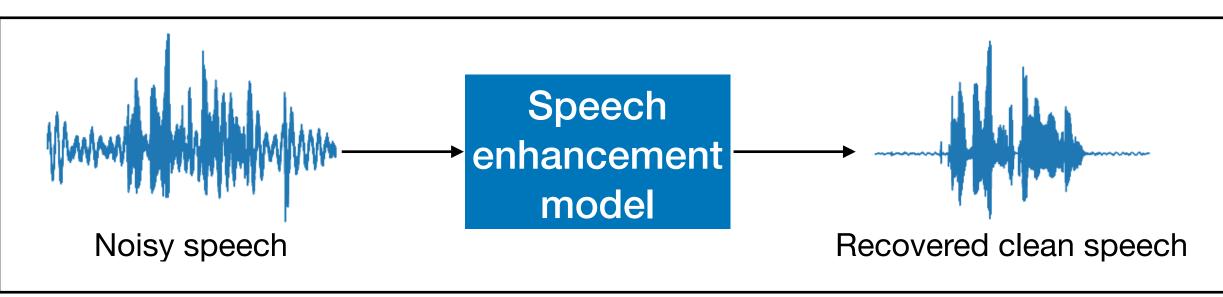
Unsupervised speech enhancement with deep dynamical generative speech and noise models

Xiaoyu Lin¹, Simon Leglaive², Laurent Girin³, Xavier Alameda-Pineda¹


¹ Inria Grenoble Rhône-Alpes, Univ. Grenoble Alpes, France ² CentraleSupélec, IETR (UMR CNRS 6164), France ³ Univ. Grenoble Alpes, CNRS, Grenoble-INP, GIPSA-lab, France

INTERSPEECH 2023



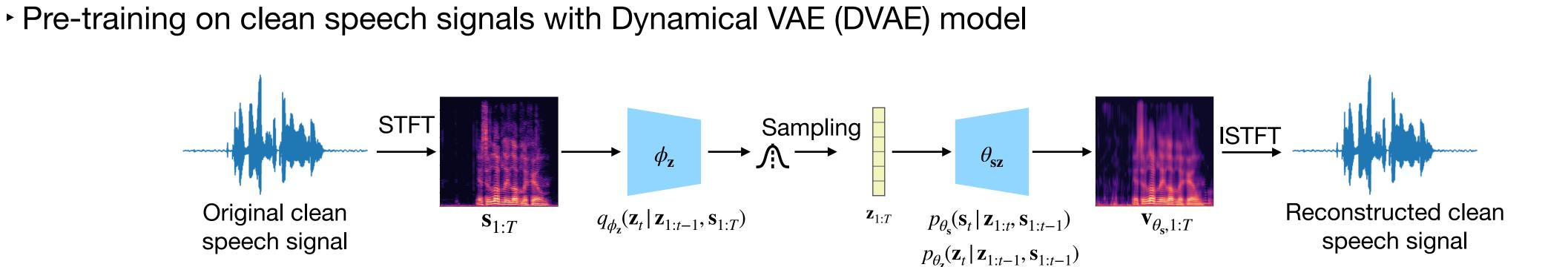
Speech enhancement

Supervised speech enhancement methods

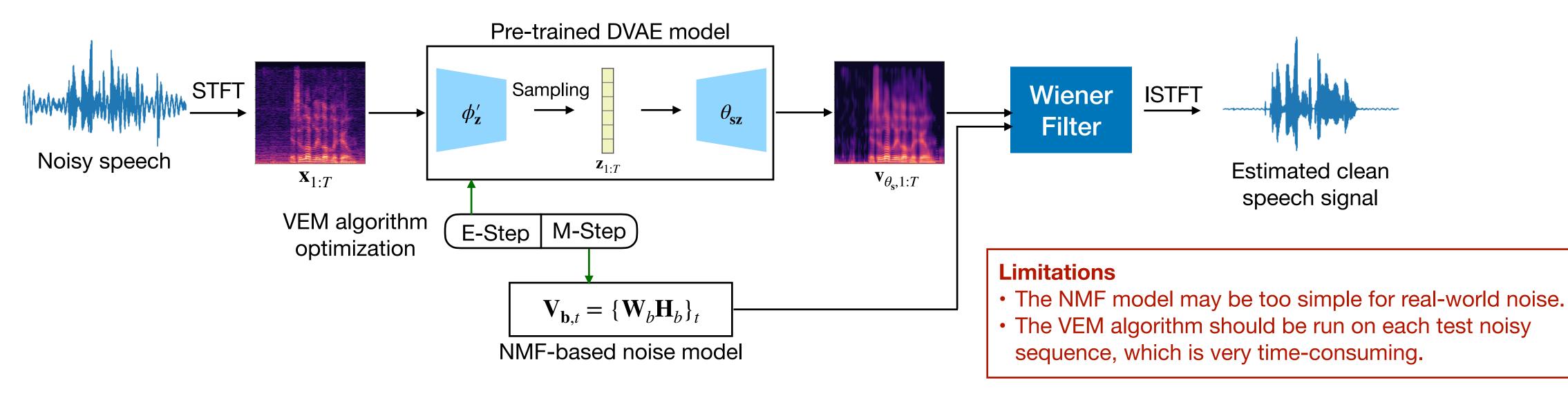
- Direct mapping from the noisy speech to the recovered clean speech.
- Model trained by minimizing a certain distance between the ground truth and estimated clean speech.

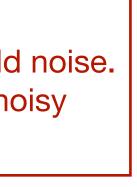
Context

Limitations of the supervised speech enhancement methods


- Requirements for large amount of parallel clean-noisy speech signals for training.
- Poor generalization ability to noise types and acoustic conditions that were not seen during training.

Unsupervised speech enhancement methods


- No need for parallel clean-noisy speech dataset for training.
- Can be further divided into unsupervised noise-dependent (U-ND) and unsupervised noise-agnostic
 (U-NA) methods.
- Unsupervised noise-dependent (U-ND) methods use noise or noisy samples during training.
- Unsupervised noise-agnostic (U-NA) methods estimate the noise characteristics directly at test time.


Context

Deep probabilistic model-based U-NA method: RVAE-VEM model

Speech enhancement with the pre-trained DVAE model and NMF-based noise model

Main contributions

- - _
- - _ (NO), or both (NOLV).

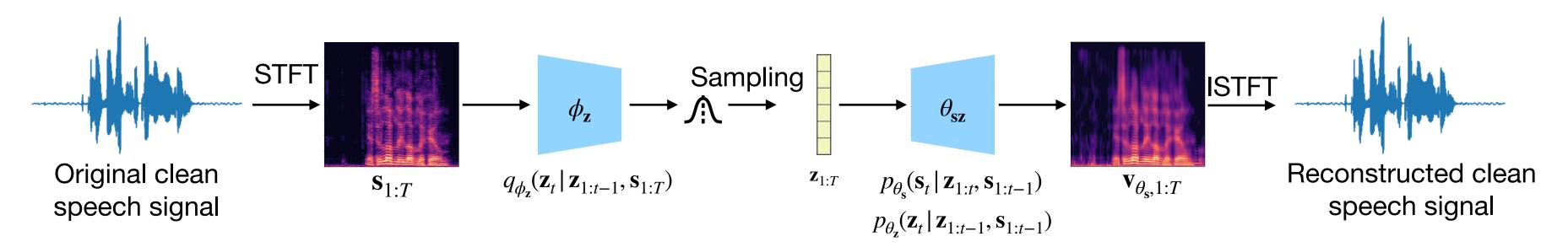
Flexible to be trained in different configurations.

- trained in U-ND configuration, then fine-tuned in U-NA configuration.
- Performance comparable to that of the NMF-based method with less inference time in U-ND configuration.
 - ND configuration.

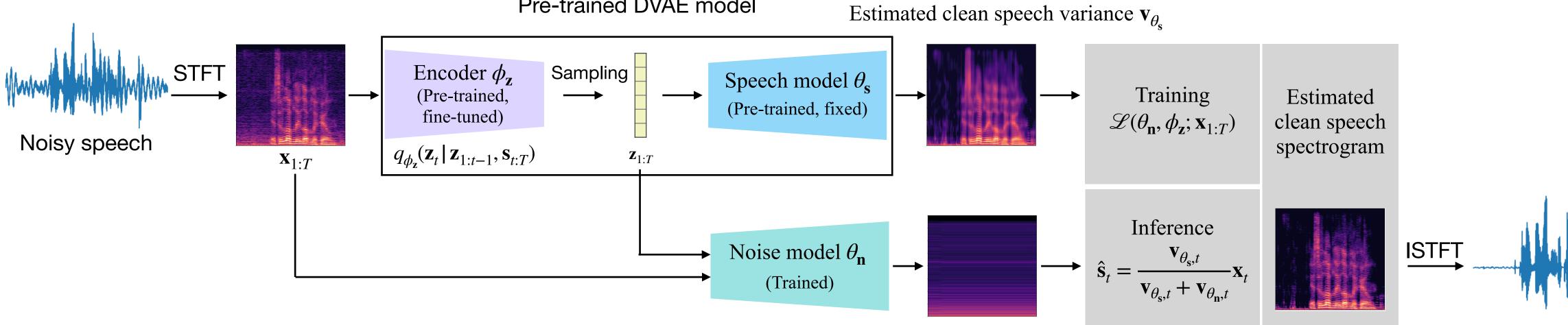
Replace the NMF noise model with a deep dynamical generative model (DDGM).

The DDGM model is a general class of dynamical models for the generation of sequential data based on DNNs.

Implement and test the DDGM noise model with different variable dependencies.


We test the noise model with three kind of dependencies: the DVAE latent variables (LV), or the noisy observations

The proposed method can be trained in both the U-NA and the U-ND configurations. Further, it can be first


The proposed method requires much less computation time during inference when trained and tested in the U-

DDGM-based speech enhancement method

Pre-training on clean speech signals with Dynamical VAE (DVAE) model

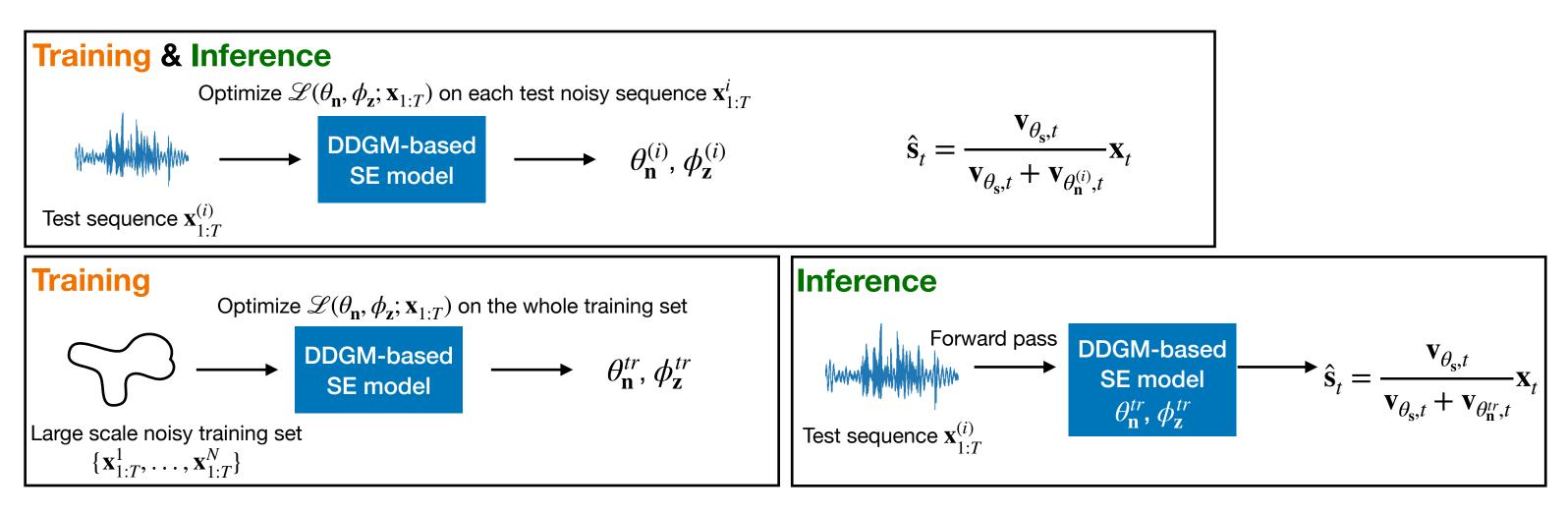
Speech enhancement with the pre-trained DVAE model and DDGM-based noise model

Pre-trained DVAE model

Estimated noise variance \mathbf{v}_{θ_n}

Estimated clean speech signal

Different variable dependencies and training configurations


Three variable dependencies of the noise model

- DVAE latent variables (LV): $\mathbf{v}_{\theta_{n},t} = \mathbf{v}_{\theta_{n},t}(\mathbf{z}_{1:T})$
- Noisy observations (NO): $\mathbf{v}_{\theta_n,t} = \mathbf{v}_{\theta_n,t}(\mathbf{x}_{1:t-1})$
- Both noisy observations and DVAE latent variables (

Three training configurations

Unsupervised noise-agnostic (U-NA)

Unsupervised noise-dependent (U-ND)

• U-NA fine-tuning after U-ND training (U-NDA)

(NOLV):
$$\mathbf{v}_{\theta_{\mathbf{n}},t} = \mathbf{v}_{\theta_{\mathbf{n}},t}(\mathbf{x}_{1:t-1}, \mathbf{z}_{1:t})$$

Experimental settings

Datasets

- VoiceBank-DEMAND (VB-DMD)
- WSJ0-QUT

Pre-processing

• STFT coefficients: 64-ms sine window (1,024 samples) and 75%-overlap (256-sample shift)

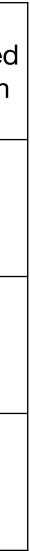
Baseline models

- Supervised methods: Open-Unmix (UMX), MetricGAN+, CDiffuSE, SGMSE+
- Unsupervised methods: MetricGAN-U, NyTT, RVAE-VEM

Evaluation metrics

- •Enhancement performance: SI-SDR, PESQ (in [-0.5, 4.5]), ESTOI (in [0, 1])
- Computational efficiency: RTF

Experimental results


Table 1: Speech enhancement results.

Dataset	Training configuration	Model	SI-SDR \uparrow	$\mathrm{PESQ}_{\mathrm{MOS}}\uparrow$	ESTOI \uparrow
	-	Noisy mixture	-2.6	1.83	0.50
TUQ-QUT	U-NA	RVAE-LV	5.4	2.31	0.65
		RVAE-NO	6.0	2.33	0.65
		RVAE-NOLV	5.5	2.31	0.65
	U-ND	RVAE-LV	5.3	2.25	0.60
		RVAE-NO	3.7	2.11	0.58
		RVAE-NOLV	4.9	2.11	0.60
	U-NDA	RVAE-LV	6.2	2.38	0.62
		RVAE-NO	5.8	2.31	0.63
		RVAE-NOLV	6.2	2.29	0.62
D	Noisy mixture	-	8.4	3.02	0.79
	U-NA	RVAE-LV	17.5	3.23	0.82
		RVAE-NO	17.3	3.25	0.82
DM		RVAE-NOLV	17.5	3.25	0.82
VB-DMD	U-ND	RVAE-LV	17.4	3.24	0.81
		RVAE-NO	16.7	3.03	0.79
		RVAE-NOLV	16.9	3.04	0.79
	U-NDA	RVAE-LV	17.8	3.22	0.81
		RVAE-NO	17.2	3.06	0.80
		RVAE-NOLV	17.4	3.17	0.81

 $\mathsf{RVAE-LV:} \ \mathbf{v}_{\theta_{\mathbf{n}},t} = \mathbf{v}_{\theta_{\mathbf{n}},t}(\mathbf{z}_{1:T}) \quad \mathsf{RVAE-NO:} \ \mathbf{v}_{\theta_{\mathbf{n}},t} = \mathbf{v}_{\theta_{\mathbf{n}},t}(\mathbf{x}_{1:t-1}) \quad \mathsf{RVAE-NOLV:} \ \mathbf{v}_{\theta_{\mathbf{n}},t} = \mathbf{v}_{\theta_{\mathbf{n}},t}(\mathbf{x}_{1:t-1}, \mathbf{z}_{1:t})$

Speech enhancement examples

Model	Training configuration	Noisy speech	Reconstructed clean speech
	U-NA		
RVAE-LV	U-ND		
	U-NDA		

Comparison with the baselines

Table 2: Speech enhancement results. The baselines scores are taken from the corresponding papers. The best scores are in bold and the second best scores are underlined.

Dataset	Model	Supervision	SI-SDR \uparrow	$\mathrm{PESQ}_{\mathrm{MOS}}\uparrow$	ESTOI \uparrow
	Noisy mixture	-	-2.6	1.83	0.50
TU	UMX	Supervised	5.7	2.16	0.63
<u>)-Q</u>	MetricGAN+	Supervised	3.6	2.83	0.60
WSJ0-QUT	RVAE-VEM	U-NA	5.8	2.27	0.62
М		U-NA	5.4	2.31	0.65
	RVAE-LV	U-ND	5.3	2.25	0.60
		U-NDA	6.2	2.38	0.62
	Noisy mixture	-	8.4	3.02	0.79
	UMX	Supervised	14.0	3.18	0.83
	MetricGAN+	Supervised	8.5	3.59	0.83
Θ	CDiffuSE	Supervised	12.6	-	0.79
DM	SGMSE+	Supervised	17.3	-	0.87
VB-DMI	NyTT Xtra	U-ND	17.7	-	-
-	MetricGAN-U	U-ND	8.2	3.20	0.77
	RVAE-VEM	U-NA	17.1	3.23	0.81
		U-NA	17.5	3.23	0.82
	RVAE-LV	U-ND	17.4	$\underline{3.24}$	0.81
		U-NDA	17.8	3.22	0.81

Inference computation time

Table 3: Inference computation time measured by the average real-time factor (RTF).

Dataset	Training configuration	Model	# Iteration	RTF
TU	U-NA	RVAE-VEM	300	27.91
	U-NA	RVAE-LV	1000	89.42
		RVAE-NO	1000	89.34
-0		RVAE-NOLV	1000	90.98
WSJ0-QUT		RVAE-LV	0	0.02
	U-ND	RVAE-NO	0	0.02
		RVAE-NOLV	0	0.02
	U-NDA	RVAE-LV	190	17.42
		RVAE-NO	500	45.54
		RVAE-NOLV	500	45.92
	SGMSE+	Supervised	-	3.39
		RVAE-LV	900	81.62
VB-DMD	U-NA	RVAE-NO	400	36.79
		RVAE-NOLV	800	73.24
		RVAE-LV	0	0.02
	U-ND	RVAE-NO	0	0.02
		RVAE-NOLV	0	0.02
		RVAE-LV	25	2.32
	U-NDA	RVAE-NO	25	2.13
		RVAE-NOLV	95	8.84

The real-time factor (RTF) is the time required to process 1 second of audio.

Conclusion

- DDGM for both speech and noise.
- We tested three different dependencies for the noise model (NO, NOLV, LV), as well as three 'training/testing' configurations (U-NA, U-ND and U-NDA).
- Experimental results show that our model achieves comparable performance with the supervised and unsupervised baselines.
- In the ND configuration, our model provides a very fast inference process.

We propose a new unsupervised speech enhancement model that uses a